作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目前,大部分离群点检测算法需要人工输入参数,不能同时检测出全局和局部离群点,不能有效处理密度不均匀数据。针对这些问题,提出一种基于密度划分的离群点检测算法DD-DBSCAN。主要创新包括:1)运用最小生成树的方法,新定义簇密度概念,将数据录入后划分成密度不等的簇,使算法能够处理密度分布不均匀的数据;2)采用“分而治之”的思想,对经过划分的数据集分别进行离群点检测,使得算法能够同时处理全局和局部离群点;3)通过在各个簇中自适应地计算所需参数值,算法不再需要人工输入参数(聚类半径(Eps)等)。通过在2D模拟数据集和Iris真实数据集上的实验表明,与DBSCAN算法比较,本文算法具有更高的覆盖率和正确率。
推荐文章
基于聚类划分的两阶段离群点检测算法
层次聚类
K-均值
信息熵
距离和
离群点检测
基于分化距离的离群点检测算法
离群点检测
分化距离
分化度
友邻点
一种基于邻域系统密度差异度量的离群点检测算法
数据挖掘
离群点检测
基于密度
LOF
LDOF
CBOF
一种基于多标记的局部离群点检测算法
机器学习
局部离群点
多标记
类别权重
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于密度划分的离群点检测算法
来源期刊 计算机与现代化 学科 工学
关键词 数据挖掘 聚类 离群点检测
年,卷(期) 2015,(3) 所属期刊栏目 算法设计与分析
研究方向 页码范围 26-32
页数 7页 分类号 TP301
字数 5235字 语种 中文
DOI 10.3969/j.issn.1006-2475.2015.03.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王勇 西北工业大学理学院 73 493 12.0 19.0
2 魏龙 西北工业大学计算机学院 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (38)
共引文献  (261)
参考文献  (11)
节点文献
引证文献  (6)
同被引文献  (24)
二级引证文献  (1)
1948(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(9)
  • 参考文献(0)
  • 二级参考文献(9)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(6)
  • 参考文献(5)
  • 二级参考文献(1)
2010(4)
  • 参考文献(2)
  • 二级参考文献(2)
2011(3)
  • 参考文献(2)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(4)
  • 引证文献(3)
  • 二级引证文献(1)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
数据挖掘
聚类
离群点检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与现代化
月刊
1006-2475
36-1137/TP
大16开
南昌市井冈山大道1416号
44-121
1985
chi
出版文献量(篇)
9036
总下载数(次)
25
总被引数(次)
56782
论文1v1指导