基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于算法随机性理论提出的直推式置信机器能够给出预测的可靠性,但其多用于解决两类识别问题。扩展了置信机器,利用了正反类的思想,在识别时比较多个P值来确定测试样本的分类,使其很容易一次性应用于多分类识别问题。为对扩展后的模型性能进行评估,将其应用于经典的模式识别-人脸识别。实验结果表明,扩展后的置信机器具有良好的分类性能,当每类训练集样本增加到6个时,识别率已高于96%。
推荐文章
基于HBase的多分类逻辑回归算法研究
块批量梯度下降
多分类
逻辑回归
大数据
HBase
混合多分类器结合算法在遥感影像分类中的应用研究
多分类器结合
抽象级
测量级
Bagging
精度评价
基于加权模糊隶属度的二叉树多分类算法
二叉树
支持向量机
模糊隶属度
模糊支持向量机
多分类算法
基于AdaBoost多分类算法变压器故障诊断
AdaBoost .M2
kNN分类
变压器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于TCM的多分类算法研究
来源期刊 计算机工程与应用 学科 工学
关键词 置信机器 多分类识别 正反类 人脸识别
年,卷(期) 2015,(8) 所属期刊栏目 网络、通信、安全
研究方向 页码范围 134-137
页数 4页 分类号 TP391.4
字数 3650字 语种 中文
DOI 10.3778/j.issn.1002-8331.1305-0207
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张锦 湖南大学信息科学与工程学院 47 477 10.0 20.0
2 王如龙 湖南大学信息科学与工程学院 80 885 15.0 27.0
3 李勇军 湖南大学信息科学与工程学院 30 412 11.0 19.0
4 赵二群 湖南大学信息科学与工程学院 3 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (34)
共引文献  (19)
参考文献  (7)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(5)
  • 参考文献(1)
  • 二级参考文献(4)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(4)
  • 参考文献(3)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
置信机器
多分类识别
正反类
人脸识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导