基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决基于传统模型的协同过滤算法的数据稀疏性与冷启动问题,引入置信度参数,并结合隐式反馈信息,提出了两种基于奇异值分解(SVD)的协同过滤算法,CSVD和NCSVD.CSVD算法在基于偏置的矩阵分解模型上引入了置信度参数,以改进模型偏置项没有针对物品规模根据每个评分调整偏置权重的问题,NCSVD在此基础上引入隐式反馈信息,改善了冷启动问题,在真实数据集上的实验证明表明,其能有效提高SVD系列算法的推荐精度.
推荐文章
基于置信度加权的单类协同过滤推荐算法
推荐系统
单类协同过滤
隐性反馈
置信度加权
异构置信度优化
基于 IALM 和填充可信度的协同过滤算法及其并行化研究
协同过滤
填充可信度
指数遗忘函数
Hadoop
并行化
结合关联规则填充的协同过滤改进算法
关联规则
数据填充
协同过滤
推荐算法
评分矩阵
数据稀疏
对比实验
协同过滤算法的研究
推荐系统
协同过滤
基于用户的算法
基于物品的算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合置信度和SVD的协同过滤算法
来源期刊 计算机与数字工程 学科 工学
关键词 推荐系统 协同过滤 奇异值分解 置信度 算法
年,卷(期) 2015,(5) 所属期刊栏目 算法与分析
研究方向 页码范围 758-761
页数 4页 分类号 TP391.41
字数 3777字 语种 中文
DOI 10.3969/j.issn1672-9722.2015.05.002
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张超 贵州大学计算机科学与技术学院 66 261 8.0 14.0
2 秦永彬 贵州大学计算机科学与技术学院 63 213 8.0 10.0
3 黄瑞章 贵州大学计算机科学与技术学院 16 47 4.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (52)
共引文献  (379)
参考文献  (4)
节点文献
引证文献  (8)
同被引文献  (7)
二级引证文献  (2)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(16)
  • 参考文献(0)
  • 二级参考文献(16)
2008(10)
  • 参考文献(0)
  • 二级参考文献(10)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(3)
  • 引证文献(2)
  • 二级引证文献(1)
2019(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
推荐系统
协同过滤
奇异值分解
置信度
算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
贵州省科学技术基金
英文译名:Natural Science Foundation of Guangxi Province
官方网址:
项目类型:重点项目
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导