基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
引起大坝变形的影响因素很多,即在利用支持向量机( SVM)模型进行大坝变形分析和预报的过程中,需要将所有的影响因子都输入到SVM模型中,这样会造成输入因子的不侧重性,基于此,本文对大坝变形的影响因子进行相关性分析,根据大坝变形影响因子和大坝变形量之间的关系来确定最优的影响因子,即将比重比较大的影响因子输入到SVM模型中,从而提高了SVM模型运行效率及预测的精度和速度。
推荐文章
FA-SVM模型在大坝变形预测中的应用
大坝变形
参数优化
支持向量机
萤火虫算法
最优加权组合预测模型在大坝变形监测中的应用
最优加权组合模型
大坝安全监测
线性回归
时间序列
BP神经网络
基于DPSO-ANFIS的大坝变形预测模型
自适应模糊神经网络
动态权重粒子群算法
大坝变形预测
适应度
基于 SVM-ARIMA的大坝变形预测模型
大坝变形
预测模型
支持向量机
ARIMA
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Correlation -SVM 模型在大坝变形预测中的应用
来源期刊 测绘与空间地理信息 学科 地球科学
关键词 相关性 SVM 影响因子 变形 预测
年,卷(期) 2015,(8) 所属期刊栏目 基金项目专栏
研究方向 页码范围 37-40
页数 4页 分类号 P25|TU196
字数 3413字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘慕溪 7 2 1.0 1.0
2 朱涛 4 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (165)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(2)
  • 二级参考文献(2)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(6)
  • 参考文献(2)
  • 二级参考文献(4)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
相关性
SVM
影响因子
变形
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测绘与空间地理信息
月刊
1672-5867
23-1520/P
大16开
哈尔滨市南岗区测绘路32号
14-5
1978
chi
出版文献量(篇)
11361
总下载数(次)
46
总被引数(次)
45485
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导