基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
以遗传算法、相关向量机理论作为理论指导,采用基于遗传算法优化相关向量机算法对提取的特征向量进行故障分类,并通过与未优化的相关向量机、支持向量机、BP神经网络方法对比,结果发现通过遗传算法优化的相关向量机算法的故障分类正确率要高于相关向量机算法、支持向量机算法和BP神经网络的故障分类方法的正确率,仿真实验验证了优化后的算法在燃机涡轮叶片故障诊断中的优越性和可行性。
推荐文章
基于遗传算法和支持向量机的故障诊断方法
最小二乘支持向量机
自适应遗传算法
机载电气盒
故障诊断
遗传算法优化支持向量机的道岔控制电路故障诊断
遗传算法
支持向量机
道岔控制电路
故障诊断
基于粒子群算法优化支持向量机汽车故障诊断研究
粒子群算法
支持向量机
汽车故障诊断
遗传聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于遗传算法优化的相关向量机的燃机涡轮叶片故障诊断
来源期刊 应用科技 学科 工学
关键词 遗传算法 相关向量机 神经网络 故障诊断 涡轮叶片 燃气轮机
年,卷(期) 2016,(2) 所属期刊栏目
研究方向 页码范围 70-74
页数 5页 分类号 TK478
字数 4578字 语种 中文
DOI 10.11991/yykj.201506026
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈立伟 哈尔滨工程大学信息与通信工程学院 49 162 7.0 8.0
2 黄璐 哈尔滨工程大学信息与通信工程学院 4 19 3.0 4.0
3 齐传斌 哈尔滨工程大学信息与通信工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (85)
参考文献  (7)
节点文献
引证文献  (2)
同被引文献  (16)
二级引证文献  (3)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(5)
  • 参考文献(1)
  • 二级参考文献(4)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(2)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(2)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
遗传算法
相关向量机
神经网络
故障诊断
涡轮叶片
燃气轮机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用科技
双月刊
1009-671X
23-1191/U
大16开
哈尔滨市南通大街145号1号楼
14-160
1974
chi
出版文献量(篇)
4861
总下载数(次)
7
总被引数(次)
21528
论文1v1指导