基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
超声检测中对缺陷进行类型分析通常取决于操作人员对于特定专业知识的了解及检测经验,从而导致其分析结果的不稳定性和个体差异性.本文提出了一种使用小波包变换提取缺陷特征信息,并应用深度神经网络对得到的信息进行分类识别的方法.利用超声相控阵系统对于不锈钢试块上的通孔、斜通孔和平底孔进行超声检测,并对得到的超声回波波形按照新方法进行分析.实验结果表明,使用小波包变换后的数据进行分类识别能够在提高识别准确率的同时降低神经网络的学习时间,而使用深度神经网络相比通用的BP神经网络以可接受延长学习时间的代价提高了识别的准确率.采用新方法后,缺陷分类正确率提高了21.66%,而网络学习时间只延长了91.9 s.在超声检测中使用小波包变换和深度神经网络来对于缺陷进行类型分析,能够排除人为干扰,增加识别准确率,对于实际应用有着极大的意义.
推荐文章
基于小波包分析和BP神经网络的中医脉象识别方法
脉象识别
BP神经网络
小波包分析
小波变换和神经网络的电路故障诊断
电路故障诊断
小波变换
神经网络
故障特征提取
时频信息确定
诊断效果检测
基于小波变换和神经网络的PCB检测
PCB边缘检测小波变换BP神经网络
基于小波包和改进 BP 神经网络算法的电机故障诊断
故障诊断
小波变换
神经网络
电机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 利用深度神经网络和小波包变换进行缺陷类型分析
来源期刊 声学学报 学科
关键词
年,卷(期) 2016,(4) 所属期刊栏目
研究方向 页码范围 499-506
页数 8页 分类号
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张碧星 中国科学院声学研究所 53 727 12.0 26.0
2 师芳芳 中国科学院声学研究所 22 94 6.0 9.0
3 施成龙 中国科学院声学研究所 3 6 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (98)
共引文献  (88)
参考文献  (24)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1901(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(1)
  • 二级参考文献(1)
1988(3)
  • 参考文献(0)
  • 二级参考文献(3)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(7)
  • 参考文献(0)
  • 二级参考文献(7)
1993(4)
  • 参考文献(0)
  • 二级参考文献(4)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(4)
  • 参考文献(0)
  • 二级参考文献(4)
1997(7)
  • 参考文献(0)
  • 二级参考文献(7)
1998(6)
  • 参考文献(0)
  • 二级参考文献(6)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(10)
  • 参考文献(2)
  • 二级参考文献(8)
2001(8)
  • 参考文献(1)
  • 二级参考文献(7)
2002(7)
  • 参考文献(0)
  • 二级参考文献(7)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(6)
  • 参考文献(1)
  • 二级参考文献(5)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(10)
  • 参考文献(1)
  • 二级参考文献(9)
2007(8)
  • 参考文献(1)
  • 二级参考文献(7)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(6)
  • 参考文献(6)
  • 二级参考文献(0)
2011(3)
  • 参考文献(3)
  • 二级参考文献(0)
2012(4)
  • 参考文献(4)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
声学学报
双月刊
0371-0025
11-2065/O4
大16开
北京市北四环西路21号
2-181
1964
chi
出版文献量(篇)
2139
总下载数(次)
5
总被引数(次)
26571
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导