基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
对将神经网络Skeletonization算法进行改进,运用到优化调整锅炉性能参数的方法,用神经网络模型预测锅炉运行中需要优化的性能参数.通过神经网络的学习,模拟性能参数的影响因素与性能参数之间的映射函数,再通过改进Skeletonization算法对网络模型进一步计算,找出哪些影响因素对性能参数的影响较大,为快速有效准确的机组运行优化提供指导依据和方向.这种方法不仅能为机组运行优化提供直观的理论根据,同时对锅炉的运行不产生负面影响,可以实现在线优化运行.通过计算影响因素的权重值,对性能参数准确预报,为锅炉机组的性能优化调整提供便捷、准确、全面的方案.
推荐文章
基于神经网络遗传算法的锅炉燃烧优化系统
锅炉
神经网络
遗传算法
Matlab
基于神经网络与遗传算法的锅炉系统的优化
预测
优化
循环流化床锅炉
Matlab
C#
优化BP神经网络算法在油茶产量预测中的应用
油茶
BP神经网络算法
回溯法
相对误差
混合粒子群优化算法优化前向神经网络结构和参数
粒子群优化
神经网络
故障诊断
遗传算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 神经网络Skeletonization算法在优化锅炉运行参数中的应用
来源期刊 锅炉技术 学科 工学
关键词 超临界锅炉 性能优化 神经网络 Skeletonization算法
年,卷(期) 2016,(2) 所属期刊栏目 设计·科研·试验
研究方向 页码范围 21-26
页数 6页 分类号 TK229.2
字数 4127字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陶丽 15 69 5.0 8.0
2 崔育奎 4 38 3.0 4.0
3 崇培安 8 15 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (38)
共引文献  (16)
参考文献  (4)
节点文献
引证文献  (5)
同被引文献  (11)
二级引证文献  (4)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(2)
  • 参考文献(0)
  • 二级参考文献(2)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(3)
  • 参考文献(0)
  • 二级参考文献(3)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(3)
  • 引证文献(3)
  • 二级引证文献(0)
2019(5)
  • 引证文献(2)
  • 二级引证文献(3)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
超临界锅炉
性能优化
神经网络
Skeletonization算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
锅炉技术
双月刊
1672-4763
31-1508/TK
16开
上海市闵行区华宁路250号
1970
chi
出版文献量(篇)
2293
总下载数(次)
7
总被引数(次)
14330
论文1v1指导