基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决高可靠复杂设备的剩余寿命通常与多个性能参数共同退化相关的实际问题,提出一种多变量灰色误差神经网络预测方法。首先,建立经过背景值优化的多变量灰色预测模型 MGM(1,n),并得到原始数据序列的初始预测值。然后,利用神经网络建立残差序列与原始数据序列之间的映射关系,训练 RBF 神经网络。最后,将改进的 MGM(1,n)模型和 RBF 神经网络集成,建立多变量灰色误差神经网络预测模型。实例计算结果表明,与单一预测模型相比,该方法能够有效提高预测精度。
推荐文章
基于灰色粗糙集与BP神经网络的设备故障预测
灰色关联分析
粗糙集
BP神经网络
约简
故障预测
基于堆叠稀疏自编码神经网络的航空发动机剩余寿命预测方法研究
航空发动机
堆叠自编码
BP神经网络
寿命预测
多退化变量灰色预测模型的滚动轴承剩余寿命预测
剩余寿命预测
滚动轴承
多退化变量灰色预测模型
退化趋势特征参数
基于改进灰色神经网络的故障预测方法研究
故障预测
预测与健康管理
灰色神经网络模型
附加动量变学习速率法
改进灰色神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于灰色神经网络的设备剩余寿命在线预测
来源期刊 太原科技大学学报 学科 工学
关键词 剩余寿命 多变量灰色模型 优化 径向基神经网络
年,卷(期) 2016,(2) 所属期刊栏目 计算机科学与信息工程
研究方向 页码范围 81-86
页数 6页 分类号 TP206
字数 5157字 语种 中文
DOI 10.3969/j.issn.1673-2057.2016.02.001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 薛颂东 太原科技大学工业与系统工程研究所 25 137 5.0 11.0
2 史华洁 太原科技大学工业与系统工程研究所 2 5 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
剩余寿命
多变量灰色模型
优化
径向基神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
太原科技大学学报
双月刊
1673-2057
14-1330/N
大16开
山西省太原市万柏林区窊流路66号
22-34
1980
chi
出版文献量(篇)
2179
总下载数(次)
6
总被引数(次)
8489
论文1v1指导