基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对采空区煤炭自然发火的预测问题,从温度、标志气体浓度以及钻孔参数3个方面选取了8个相关因素,利用Logistic回归分析从中提取出5个相对重要的因素作为预测模型的输入,运用极限学习机算法进行预测,并采用粒子群算法对极限学习机的输入权值及隐含层阈值作优化选取,以提高其泛化能力及预测精度,以此建立了PSO-ELM自然发火预测模型.选用28组训练样本和12组检验样本进行模型的预测实验,结果表明,基于Logistic回归分析筛选指标后的PSO-ELM模型有较高的预测精度,是预测采空区自然发火的一个有效方法.
推荐文章
粗糙集与支持向量机在采空区自然发火预测中的应用研究
粗糙集
支持向量机
采空区自然发火
预测
基于在线序列-极限学习机的干旱预测
极限学习机
在线序列
干旱
预测因子
极限学习机在耙吸挖泥船产量预测中的应用
极限学习机
耙吸式挖泥船
产量预测
黑箱模型
基于改进极限学习机的微信热点预测
微信热点
预测模型
极限学习机
验证性测试
权值更新
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 极限学习机在采空区自然发火预测中的应用
来源期刊 辽宁工程技术大学学报(自然科学版) 学科 工学
关键词 煤炭自燃 logistic回归分析 极限学习机 粒子群算法 参数优化
年,卷(期) 2016,(6) 所属期刊栏目
研究方向 页码范围 581-585
页数 5页 分类号 X936
字数 语种 中文
DOI 10.11956/j.issn.1008-0562.2016.06.005
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 仲维清 67 741 11.0 25.0
2 孙健巍 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (120)
共引文献  (297)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(5)
  • 参考文献(0)
  • 二级参考文献(5)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(5)
  • 参考文献(0)
  • 二级参考文献(5)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(5)
  • 参考文献(0)
  • 二级参考文献(5)
1997(7)
  • 参考文献(0)
  • 二级参考文献(7)
1998(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(14)
  • 参考文献(0)
  • 二级参考文献(14)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(10)
  • 参考文献(1)
  • 二级参考文献(9)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(6)
  • 参考文献(2)
  • 二级参考文献(4)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(8)
  • 参考文献(1)
  • 二级参考文献(7)
2006(6)
  • 参考文献(2)
  • 二级参考文献(4)
2007(7)
  • 参考文献(1)
  • 二级参考文献(6)
2008(8)
  • 参考文献(0)
  • 二级参考文献(8)
2009(8)
  • 参考文献(1)
  • 二级参考文献(7)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(7)
  • 参考文献(2)
  • 二级参考文献(5)
2012(6)
  • 参考文献(2)
  • 二级参考文献(4)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
煤炭自燃
logistic回归分析
极限学习机
粒子群算法
参数优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
辽宁工程技术大学学报(自然科学版)
月刊
1008-0562
21-1379/N
大16开
辽宁省阜新市
1979
chi
出版文献量(篇)
6319
总下载数(次)
12
总被引数(次)
52708
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导