基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
通过对大数据优化聚类分析,实现了机械设备的工况监测和故障诊断,提出了一种基于粒子群差分扰动优化的数据模糊C均值聚类改进算法,利用粒子群种群进化的差异度逐渐变小的聚集原理,求得符合分类属性模式的有限数据集特征,使用关联维特征提取方法得到时频聚类交叉项,结合模糊C均值聚类算法,把适应度最小的粒子群个体进行差分进化处理,实现大数据信息流的特征融合和优化聚类.仿真结果表明,采用该算法进行大数据聚类处理,数据聚类中心具有较好的聚焦能力,受到的旁瓣干扰较小,避免陷入局部最优,降低了误分率,在工况识别等领域具有较好的应用价值.
推荐文章
基于聚类的多子群粒子群优化算法
粒子群优化算法
聚类
子群
融合邻域扰动的简化粒子群K-均值聚类算法
粒子群优化算法
邻域扰动
K-均值聚类
优化初始聚类
基于优化粒子群算法的云环境大数据聚类算法
大数据聚类
云环境
粒子群优化
空间分割
模糊聚类
仿真测试
改进的粒子群优化模糊C均值聚类算法
模糊C均值聚类
粒子群优化
聚类有效性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 粒子群差分扰动优化的聚类算法研究
来源期刊 河南工程学院学报(自然科学版) 学科 工学
关键词 大数据 聚类 模糊C均值 粒子群
年,卷(期) 2016,(1) 所属期刊栏目 计算机科学
研究方向 页码范围 63-68
页数 6页 分类号 TP391
字数 4717字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 于海鹏 河南工程学院计算机学院 29 128 6.0 10.0
2 米捷 河南工程学院计算机学院 26 95 4.0 9.0
3 张鹏 1 11 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (63)
共引文献  (87)
参考文献  (6)
节点文献
引证文献  (11)
同被引文献  (68)
二级引证文献  (23)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(10)
  • 参考文献(1)
  • 二级参考文献(9)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(4)
  • 引证文献(3)
  • 二级引证文献(1)
2019(20)
  • 引证文献(6)
  • 二级引证文献(14)
2020(10)
  • 引证文献(2)
  • 二级引证文献(8)
研究主题发展历程
节点文献
大数据
聚类
模糊C均值
粒子群
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河南工程学院学报(自然科学版)
季刊
1674-330X
41-1397/N
大16开
河南省郑州市桐柏路62号
1989
chi
出版文献量(篇)
1609
总下载数(次)
7
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导