针对短时睡眠的特点,结合自回归-移动平均模型(Auto-Regressive and Moving Average Model,ARMA)对短时睡眠过程中的睡眠状态变化进行分析研究.以白天短时睡眠中记录的脑电信号为研究对象,首先,从脑电信号中提取了3个与短时睡眠过程相关的特征参数,采用条件概率方法对特征参数进行融合处理,计算得到一个表征睡眠状态的参数;然后,通过ARMA模型分析睡眠状态的变化趋势;最后,采用支持向量机(Support Vector Machine,SVM)方法将整个短时睡眠过程进行了睡眠状态的自动判别,并与人工判别进行比较.结果表明,基于特征融合的ARMA模型显著提高了睡眠状态分析的准确率,7组测试数据得到的平均准确率为88.7%.一方面,特征融合能够有效地提高数据处理速度,为睡眠状态实时检测提供有利的数据处理方式;另一方面,ARMA模型的预测作用,能够分析受试者的睡眠状态变化趋势,为进一步调整和控制睡眠时长提供客观评价依据.