基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对采煤机滚动轴承常见的突发问题诊断准确性不高和速度慢,以小波包和RBF神经网络为基础,提出了由小波包分解提取各个节点特征能量谱与自适应步长萤火虫算法优化的RBF神经网络进行分类辨识的采煤机滚动轴承故障诊断方法.对振动传感器输出的信号进行小波包分解,运用基于代价函数的局域判别基(LDB)算法对小波包分解进行裁剪,获取最优的特征能量谱,经处理后作为特征向量训练ASGSO-RBF神经网络,建立诊断模型.实验结果表明:所建模型的故障辨识正确率达到95.8%以上,相较于其他算法模型具有更低的误报率和漏报率,诊断精度及诊断效率更高.
推荐文章
基于小波包熵和ISODATA的滚动轴承故障诊断
故障诊断
滚动轴承
小波包熵
WPE-ISODATA
基于小波包变换和极限学习机的滚动轴承故障诊断
轴承
故障诊断
小波包变换
极限学习机
基于小波包和EMD处理的滚动轴承故障诊断
小波分解
经验模式分解
固有内在模函数
轴承故障诊断
小波包分析在滚动轴承故障诊断中应用
轴承
小波包分析
特征频率
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 采用小波包ASGSO-RBF的采煤机滚动轴承故障诊断
来源期刊 辽宁工程技术大学学报(自然科学版) 学科 工学
关键词 采煤机滚动轴承 故障诊断模型 小波包 RBF神经网络 自适应步长萤火虫算法
年,卷(期) 2016,(7) 所属期刊栏目
研究方向 页码范围 701-704
页数 4页 分类号 TP182
字数 语种 中文
DOI 10.11956/j.issn.1008-0562.2016.07.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 谢国民 32 116 7.0 9.0
2 张俊男 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (47)
共引文献  (66)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(5)
  • 参考文献(4)
  • 二级参考文献(1)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(4)
  • 参考文献(2)
  • 二级参考文献(2)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
采煤机滚动轴承
故障诊断模型
小波包
RBF神经网络
自适应步长萤火虫算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
辽宁工程技术大学学报(自然科学版)
月刊
1008-0562
21-1379/N
大16开
辽宁省阜新市
1979
chi
出版文献量(篇)
6319
总下载数(次)
12
总被引数(次)
52708
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导