原文服务方: 江西科学       
摘要:
针对岩性识别中传统方法识别率低且信息冗余的问题,建立PCA-SVM(主成分分析与支持向量机组合)岩性识别模型,即先利用主成分分析(PCA)进行参数处理,整合冗余,降低维数,后将处理得到的主成分作为支持向量机(SVM)测量模型输入的分类方法.在此过程中,优化主成分分析和支持向量机的参数,使模型具有较高的训练精度.结果表明,与传统的基于主成分分析的判别分析方法相比,预测结果与实际结果相比具有较好的一致性,识别准确率达100%.
推荐文章
基于遗传优化的PCA-SVM控制图模式识别
控制图
模式识别
遗传优化
主元分析
支持向量机
PCA-SVM在模拟电路故障诊断中的应用
主元分析法
支持向量机
故障诊断
模拟电路
基于价值投资的PCA-SVM股票选择模型研究
股票
价值投资
模式识别
支持向量机
主成分分析
基于PCA-SVM的油气管道腐蚀速率预测技术研究
油气管道
腐蚀速率
PCA-SVM模型
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PCA-SVM算法在岩性识别中的应用
来源期刊 江西科学 学科
关键词 岩性识别 主成分分析 判别分析 支持向量机
年,卷(期) 2016,(4) 所属期刊栏目 数理科学
研究方向 页码范围 504-510
页数 7页 分类号 TP183
字数 语种 中文
DOI 10.13990/j.issn1001-3679.2016.04.020
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (66)
共引文献  (111)
参考文献  (11)
节点文献
引证文献  (3)
同被引文献  (8)
二级引证文献  (1)
1976(1)
  • 参考文献(1)
  • 二级参考文献(0)
1983(1)
  • 参考文献(1)
  • 二级参考文献(0)
1984(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(8)
  • 参考文献(1)
  • 二级参考文献(7)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(4)
  • 参考文献(3)
  • 二级参考文献(1)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2019(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(2)
  • 参考文献(0)
  • 二级参考文献(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
岩性识别
主成分分析
判别分析
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
江西科学
双月刊
1001-3679
36-1093/N
大16开
1983-01-01
chi
出版文献量(篇)
4032
总下载数(次)
0
论文1v1指导