作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
动车车号识别是动车安全自动监测系统的一项重要内容.由于光照不均、运动失真等因素,动车车号的可靠识别困难较大.论文研究了基于深度网络的识别算法,通过设计卷积神经网络,以减少资源占用为出发点,获得99.20%的识别正确率.与LeNet-5卷积网络进行对比实验减少了近6倍的训练时间,并且识别率有所提高.
推荐文章
基于卷积神经网络LeNet-5的货运列车车号识别研究
列车车号
车号识别
卷积神经网络
LeNet-5
基于改进的卷积神经网络的人脸识别算法
人脸识别
深度学习
卷积神经网络
Dropout技术
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
基于稀疏卷积神经网络的考生识别算法
考生识别
卷积神经网络
人脸识别
身份验证
多通道输入
方法比
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进卷积神经网络的车号识别算法
来源期刊 数字技术与应用 学科 工学
关键词 字符识别 卷积神经网络 复杂光照 深度学
年,卷(期) 2016,(7) 所属期刊栏目 算法分析
研究方向 页码范围 126,188
页数 2页 分类号 TP391.4
字数 1047字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王欣蔚 北方工业大学电子信息工程学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
字符识别
卷积神经网络
复杂光照
深度学
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数字技术与应用
月刊
1007-9416
12-1369/TN
16开
天津市
6-251
1983
chi
出版文献量(篇)
20434
总下载数(次)
106
总被引数(次)
35701
论文1v1指导