基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
由于神经网络训练收敛速度慢、易陷入局部最优解,而最优解对神经网络的频谱感知算法性能影响大,因此为提高神经网络的频谱感知算法性能,采用蜂群算法交叉训练神经网络,加快训练收敛速度,降低均方误差。采用信号的能量、循环功率谱作为特征参数,提出了蜂群优化神经网络的频谱感知算法。仿真结果表明,在给定迭代次数下,相比能量法、循环平稳特征法、无蜂群算法交叉训练神经网络或RBF神经网络的频谱感知算法,本文算法具有更好的感知性能。
推荐文章
狼群优化的神经网络频谱感知算法
神经网络
频谱感知
协作式
狼群算法
基于混沌搜索的人工蜂群优化神经网络交通流预测方法
交通流预测
BP神经网络
人工蜂群算法
Tent混沌
分时段
基于神经网络的井下频谱合作感知
认知无线电
巷道通信
合作感知
神经网络
基于信号循环平稳特征的神经网络频谱感知算法
认知网络
频谱感知
循环自相关
人工神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 蜂群优化神经网络的频谱感知
来源期刊 信号处理 学科 工学
关键词 频谱感知 神经网络 蜂群算法 特征提取
年,卷(期) 2016,(1) 所属期刊栏目 算法研究
研究方向 页码范围 77-82
页数 6页 分类号 TP393.04
字数 4097字 语种 中文
DOI 10.16798/j.issn.1003-0530.2016.01.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵知劲 杭州电子科技大学通信工程学院 200 1531 19.0 29.0
5 陈京来 杭州电子科技大学通信工程学院 2 9 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (16)
参考文献  (7)
节点文献
引证文献  (5)
同被引文献  (9)
二级引证文献  (6)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(4)
  • 引证文献(1)
  • 二级引证文献(3)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
频谱感知
神经网络
蜂群算法
特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号处理
月刊
1003-0530
11-2406/TN
大16开
北京鼓楼西大街41号
18-143
1985
chi
出版文献量(篇)
5053
总下载数(次)
13
总被引数(次)
32728
论文1v1指导