WCC(Weighted Community Clustering)通过复杂网络中社团含有的三角数量来评价社团挖掘算法的性能。在原始的WCC算法中,需要在每次迭代中对所有的社团变化计算WCC值,因而计算量非常大。为了减小社团变化带来的WCC计算量,提出一种并行可扩展的社团挖掘算法。对应用WCC进行社团评价的方法进行分析,提出一种包含预处理、初始划分和划分改进三个阶段的并行社团挖掘算法。在划分改进中,由于每次社团变化都需要计算大量的WCC提升,基于社团的统计量提出一种WCC近似计算方法。大量的真实数据集实验表明,提出的社团挖掘算法与相关算法相比较,不仅社团检测的准确性更高,而且具有更好的并行可扩展性。