钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
自动化技术与计算机技术期刊
\
计算机应用研究期刊
\
基于存储改进的分区并行关联规则挖掘算法
基于存储改进的分区并行关联规则挖掘算法
作者:
曲海成
王永贵
谢南
原文服务方:
计算机应用研究
关联规则
大数据
候选集
布隆过滤器
Spark
摘要:
针对现有算法存储结构简单、生成大量冗余的候选集、时间和空间复杂度高、挖掘效率不理想的情况,为了进一步提高关联规则算法挖掘频繁集的速度,优化算法的执行性能,提出基于内存结构改进的关联规则挖掘算法.该算法基于Spark分布式框架,分区并行挖掘出频繁集,提出在挖掘过程中利用布隆过滤器进行项目存储,并对事务集和候选集进行精简化操作,进而达到优化挖掘频繁集的速度、节省计算资源的目的.算法在占用较少内存的条件下,相比于YAFIM和MR-Apriori算法,在挖掘频繁集效率上有明显的提升,不但能较好地提升挖掘速度,降低内存的压力,而且具有很好的可扩展性,使得算法可以应用到更大规模的数据集和集群,从而达到优化算法性能的目的.
下载原文
收藏
引用
分享
推荐文章
挖掘关联规则的并行算法研究
关联规则
并行算法
格
集群
基于模糊分区聚类的关联挖掘改进算法
模糊分区聚类
大数据
关联挖掘
特征提取
Growth的并行加权关联规则挖掘算法
关联规则挖掘
并行加权
FP-Growth算法
MapReduce
加权频繁项集
基于云平台的并行关联规则挖掘算法分析
数据挖掘
关联规则
云平台
Hadoop
内容分析
文献信息
版权信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
基于存储改进的分区并行关联规则挖掘算法
来源期刊
计算机应用研究
学科
关键词
关联规则
大数据
候选集
布隆过滤器
Spark
年,卷(期)
2020,(1)
所属期刊栏目
算法研究探讨
研究方向
页码范围
167-171
页数
5页
分类号
TP301.6
字数
语种
中文
DOI
10.19734/j.issn.1001-3695.2018.06.0396
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
王永贵
辽宁工程技术大学软件学院
47
293
10.0
15.0
2
曲海成
辽宁工程技术大学软件学院
52
387
11.0
18.0
3
谢南
辽宁工程技术大学软件学院
1
0
0.0
0.0
传播情况
被引次数趋势
(/次)
(/年)
版权信息
全文
全文.pdf
引文网络
引文网络
二级参考文献
(44)
共引文献
(95)
参考文献
(9)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
1996(1)
参考文献(0)
二级参考文献(1)
2000(2)
参考文献(0)
二级参考文献(2)
2001(1)
参考文献(0)
二级参考文献(1)
2002(1)
参考文献(0)
二级参考文献(1)
2003(1)
参考文献(0)
二级参考文献(1)
2005(1)
参考文献(0)
二级参考文献(1)
2006(2)
参考文献(0)
二级参考文献(2)
2007(2)
参考文献(0)
二级参考文献(2)
2008(2)
参考文献(1)
二级参考文献(1)
2009(3)
参考文献(0)
二级参考文献(3)
2010(3)
参考文献(0)
二级参考文献(3)
2011(5)
参考文献(0)
二级参考文献(5)
2012(4)
参考文献(0)
二级参考文献(4)
2013(9)
参考文献(0)
二级参考文献(9)
2014(7)
参考文献(2)
二级参考文献(5)
2015(4)
参考文献(1)
二级参考文献(3)
2016(5)
参考文献(5)
二级参考文献(0)
2020(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
关联规则
大数据
候选集
布隆过滤器
Spark
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
主办单位:
四川省计算机研究院
出版周期:
月刊
ISSN:
1001-3695
CN:
51-1196/TP
开本:
大16开
出版地:
邮发代号:
创刊时间:
1984-01-01
语种:
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
期刊文献
相关文献
1.
挖掘关联规则的并行算法研究
2.
基于模糊分区聚类的关联挖掘改进算法
3.
Growth的并行加权关联规则挖掘算法
4.
基于云平台的并行关联规则挖掘算法分析
5.
基于事务压缩的关联规则挖掘算法改进
6.
基于矩阵的关联规则挖掘算法研究与改进
7.
基于MapReduce计算模型的并行关联规则挖掘算法研究综述
8.
基于模糊关联规则并行挖掘算法的飞行数据处理
9.
基于模糊关联规则挖掘改进算法的IDS研究
10.
关联规则挖掘 Apriori 算法的研究与改进
11.
基于遗传算法的关联规则挖掘
12.
关联规则挖掘算法
13.
一种基于关联规则挖掘的分类规则挖掘算法
14.
基于概念层次的关联规则挖掘算法
15.
基于遗传算法的双向关联规则挖掘
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
计算机应用研究2000
计算机应用研究2001
计算机应用研究2002
计算机应用研究2003
计算机应用研究2004
计算机应用研究2005
计算机应用研究2006
计算机应用研究2007
计算机应用研究2008
计算机应用研究2009
计算机应用研究2010
计算机应用研究2011
计算机应用研究2012
计算机应用研究2013
计算机应用研究2014
计算机应用研究2015
计算机应用研究2016
计算机应用研究2017
计算机应用研究2018
计算机应用研究2019
计算机应用研究2020
计算机应用研究2022
计算机应用研究2020年第2期
计算机应用研究2020年第6期
计算机应用研究2020年第5期
计算机应用研究2020年第3期
计算机应用研究2020年第4期
计算机应用研究2020年第1期
计算机应用研究2020年第7期
计算机应用研究2020年第8期
计算机应用研究2020年第9期
计算机应用研究2020年第11期
计算机应用研究2020年第10期
计算机应用研究2020年第12期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号