基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
该文研究了训练样本不足的情况下利用卷积神经网络(Convolutional Neural Network, CNN)对合成孔径雷达(SAR)图像实现目标检测的问题。利用已有的完备数据集来辅助场景复杂且训练样本不足的数据集进行检测。首先用已有的完备数据集训练得到CNN分类模型,用于对候选区域提取网络和目标检测网络做参数初始化;然后利用完备数据集对训练数据集做扩充;最后通过“四步训练法”得到候选区域提取模型和目标检测模型。实测数据的实验结果证明,所提方法在SAR图像目标检测中可以获得较好的检测效果。
推荐文章
基于卷积神经网络的乳腺疾病检测算法
卷积神经网络
特征融合
空间金字塔池化
尺度无关
乳腺疾病检测
基于卷积神经网络的图像检测识别算法综述
卷积神经网络
图像检测
图像识别
基于贝叶斯卷积神经网络与数据增强的SAR图像目标分类方法
合成孔径雷达
目标分类
贝叶斯卷积神经网络
数据增强
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的SAR图像目标检测算法
来源期刊 电子与信息学报 学科 工学
关键词 合成孔径雷达 目标检测 卷积神经网络 训练数据扩充
年,卷(期) 2016,(12) 所属期刊栏目 论文
研究方向 页码范围 3018-3025
页数 8页 分类号 TN957.51
字数 6219字 语种 中文
DOI 10.11999/JEIT161032
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (4)
共引文献  (12)
参考文献  (4)
节点文献
引证文献  (45)
同被引文献  (118)
二级引证文献  (39)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(4)
  • 引证文献(4)
  • 二级引证文献(0)
2018(16)
  • 引证文献(14)
  • 二级引证文献(2)
2019(39)
  • 引证文献(18)
  • 二级引证文献(21)
2020(25)
  • 引证文献(9)
  • 二级引证文献(16)
研究主题发展历程
节点文献
合成孔径雷达
目标检测
卷积神经网络
训练数据扩充
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子与信息学报
月刊
1009-5896
11-4494/TN
大16开
北京市北四环西路19号
2-179
1979
chi
出版文献量(篇)
9870
总下载数(次)
11
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导