钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
任务中心
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
无线电电子学与电信技术期刊
\
电子与信息学报期刊
\
基于卷积神经网络的SAR图像目标检测算法
基于卷积神经网络的SAR图像目标检测算法
作者:
代慧
刘宏伟
刘彬
杜兰
王燕
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
合成孔径雷达
目标检测
卷积神经网络
训练数据扩充
摘要:
该文研究了训练样本不足的情况下利用卷积神经网络(Convolutional Neural Network, CNN)对合成孔径雷达(SAR)图像实现目标检测的问题。利用已有的完备数据集来辅助场景复杂且训练样本不足的数据集进行检测。首先用已有的完备数据集训练得到CNN分类模型,用于对候选区域提取网络和目标检测网络做参数初始化;然后利用完备数据集对训练数据集做扩充;最后通过“四步训练法”得到候选区域提取模型和目标检测模型。实测数据的实验结果证明,所提方法在SAR图像目标检测中可以获得较好的检测效果。
暂无资源
收藏
引用
分享
推荐文章
基于卷积神经网络的乳腺疾病检测算法
卷积神经网络
特征融合
空间金字塔池化
尺度无关
乳腺疾病检测
基于卷积神经网络的图像检测识别算法综述
卷积神经网络
图像检测
图像识别
基于贝叶斯卷积神经网络与数据增强的SAR图像目标分类方法
合成孔径雷达
目标分类
贝叶斯卷积神经网络
数据增强
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
基于卷积神经网络的SAR图像目标检测算法
来源期刊
电子与信息学报
学科
工学
关键词
合成孔径雷达
目标检测
卷积神经网络
训练数据扩充
年,卷(期)
2016,(12)
所属期刊栏目
论文
研究方向
页码范围
3018-3025
页数
8页
分类号
TN957.51
字数
6219字
语种
中文
DOI
10.11999/JEIT161032
五维指标
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(4)
共引文献
(12)
参考文献
(4)
节点文献
引证文献
(45)
同被引文献
(118)
二级引证文献
(39)
1996(2)
参考文献(1)
二级参考文献(1)
1997(1)
参考文献(0)
二级参考文献(1)
2000(1)
参考文献(0)
二级参考文献(1)
2003(1)
参考文献(0)
二级参考文献(1)
2009(1)
参考文献(1)
二级参考文献(0)
2010(1)
参考文献(1)
二级参考文献(0)
2015(1)
参考文献(1)
二级参考文献(0)
2016(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
2017(4)
引证文献(4)
二级引证文献(0)
2018(16)
引证文献(14)
二级引证文献(2)
2019(39)
引证文献(18)
二级引证文献(21)
2020(25)
引证文献(9)
二级引证文献(16)
研究主题发展历程
节点文献
合成孔径雷达
目标检测
卷积神经网络
训练数据扩充
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子与信息学报
主办单位:
中国科学院电子学研究所
国家自然科学基金委员会信息科学部
出版周期:
月刊
ISSN:
1009-5896
CN:
11-4494/TN
开本:
大16开
出版地:
北京市北四环西路19号
邮发代号:
2-179
创刊时间:
1979
语种:
chi
出版文献量(篇)
9870
总下载数(次)
11
相关基金
国家自然科学基金
英文译名:
the National Natural Science Foundation of China
官方网址:
http://www.nsfc.gov.cn/
项目类型:
青年科学基金项目(面上项目)
学科类型:
数理科学
期刊文献
相关文献
1.
基于卷积神经网络的乳腺疾病检测算法
2.
基于卷积神经网络的图像检测识别算法综述
3.
基于贝叶斯卷积神经网络与数据增强的SAR图像目标分类方法
4.
基于卷积神经网络的目标检测研究综述
5.
基于多层卷积神经网络的SAR图像分类方法
6.
基于全卷积神经网络的遥感图像海面目标检测
7.
尺度无关的级联卷积神经网络人脸检测算法
8.
基于 NSCT分解系数的SAR图像目标检测算法
9.
基于卷积神经网络的行人目标检测系统设计
10.
基于深度卷积神经网络的图像检索算法研究
11.
基于卷积神经网络的目标检测算法综述
12.
基于卷积神经网络的PCB CT图像中的过孔和焊盘检测算法
13.
基于卷积神经网络的目标检测算法综述
14.
基于卷积神经网络的图像混合噪声去除算法
15.
深度卷积神经网络的目标检测算法综述
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
任务中心
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
电子与信息学报2022
电子与信息学报2021
电子与信息学报2020
电子与信息学报2019
电子与信息学报2018
电子与信息学报2017
电子与信息学报2016
电子与信息学报2015
电子与信息学报2014
电子与信息学报2013
电子与信息学报2012
电子与信息学报2011
电子与信息学报2010
电子与信息学报2009
电子与信息学报2008
电子与信息学报2007
电子与信息学报2006
电子与信息学报2005
电子与信息学报2004
电子与信息学报2003
电子与信息学报2002
电子与信息学报2001
电子与信息学报2000
电子与信息学报1989
电子与信息学报2016年第9期
电子与信息学报2016年第8期
电子与信息学报2016年第7期
电子与信息学报2016年第6期
电子与信息学报2016年第5期
电子与信息学报2016年第4期
电子与信息学报2016年第3期
电子与信息学报2016年第2期
电子与信息学报2016年第12期
电子与信息学报2016年第11期
电子与信息学报2016年第10期
电子与信息学报2016年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号