原文服务方: 计算机应用研究       
摘要:
针对印刷电路板(printed circuit board,PCB)计算机断层成像(computerized tomography,CT)图像通常存在噪声大、过孔和焊盘的数量多以及焊盘与背景的对比度低和焊盘形状变化较多等因素导致过孔和焊盘的检测比较困难的问题,基于卷积神经网络模型网中网,提出将池化核作为参数进行学习以提高网络的数据表达能力,在基准数据集上进行验证后结合选择性搜索算法应用于PCB CT图像中的过孔和焊盘检测.实验结果表明,参数池化能够帮助提高网络对数据的表达能力,改进后的网络能够有效检测出PCB CT图像中的过孔和焊盘,基本达到实际应用需求.
推荐文章
基于卷积神经网络的乳腺疾病检测算法
卷积神经网络
特征融合
空间金字塔池化
尺度无关
乳腺疾病检测
基于卷积神经网络的图像检测识别算法综述
卷积神经网络
图像检测
图像识别
尺度无关的级联卷积神经网络人脸检测算法
级联卷积神经网络
空间金字塔池化
人脸检测
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的PCB CT图像中的过孔和焊盘检测算法
来源期刊 计算机应用研究 学科
关键词 印刷电路板无损检测 卷积神经网络 参数池化 计算机断层成像
年,卷(期) 2018,(2) 所属期刊栏目 图形图像技术
研究方向 页码范围 637-640
页数 4页 分类号 TP391.41
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2018.02.068
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周利莉 18 202 5.0 14.0
2 陈健 20 109 5.0 9.0
3 闫镔 54 384 11.0 17.0
4 曾磊 13 73 4.0 8.0
5 贾涛 2 6 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (5)
同被引文献  (1)
二级引证文献  (1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(4)
  • 引证文献(3)
  • 二级引证文献(1)
研究主题发展历程
节点文献
印刷电路板无损检测
卷积神经网络
参数池化
计算机断层成像
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导