基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高分类器的分类精度和泛化能力,提出一种基于粒子群算法(Particle Swarm Optimization,PSO)和拉普拉斯分值(Laplace Score,LS)的混合式故障特征选择方法.该方法首先采用过滤式的特征选择方法(LS)对原始特征集进行筛选,然后利用PSO在经过精简的特征子空间里进行随机搜索,搜索过程中以支持向量机的分类准确率为适应度函数,选择出最优特征子集.用双跨转子实验台的一组故障特征数据集进行验证.实验结果表明,该方法可以有效地筛选出规模较小且最有辨别力的特征子集,能显著提高分类器的分类准确率及效率.
推荐文章
基于分组的PSO与DE的混合算法
惯性权重
粒子群优化算法
早熟收敛
差分进化
边界变异
PSO优化LS-SVM在模拟电路故障预测中的应用
LS-SVM
PPMCC
欧几里得距离
健康度
PSO
粒子群差分混合算法在PID参数优化中的应用
PID控制器
粒子群差分混合算法
选择判断因子
最优化问题全局寻优的PSO-BFGS混合算法
全局优化
混合算法
粒子群优化算法
BFGS方法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 PSO与LS混合算法在故障特征选择中的应用
来源期刊 机械设计与研究 学科 工学
关键词 特征选择 特征子集 拉普拉斯分值 粒子群算法 支持向量机
年,卷(期) 2016,(4) 所属期刊栏目 机构学与机械动力学
研究方向 页码范围 43-45,49
页数 4页 分类号 TH165|TP18
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵荣珍 117 796 16.0 23.0
2 张娟 25 118 7.0 10.0
3 王雪冬 5 12 2.0 3.0
4 张亚龙 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (59)
共引文献  (178)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(7)
  • 参考文献(1)
  • 二级参考文献(6)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(13)
  • 参考文献(1)
  • 二级参考文献(12)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
特征选择
特征子集
拉普拉斯分值
粒子群算法
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械设计与研究
双月刊
1006-2343
31-1382/TH
大16开
上海市华山路1954号(上海交通大学内)
4-577
1984
chi
出版文献量(篇)
4350
总下载数(次)
9
总被引数(次)
30407
相关基金
高等学校博士学科点专项科研基金
英文译名:
官方网址:http://std.nankai.edu.cn/kyjh-bsd/1.htm
项目类型:面上课题
学科类型:
论文1v1指导