基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高防空武器系统对空袭目标的拦截防御能力,针对现有蛇形机动识别算法鲁棒性较差的问题,提出了将航迹坐标数据转化为图像,利用深度神经卷积神经网络进行航迹模式分类的方法。针对航迹数据直接转化为图像时存在机动幅度不明显或过大的问题,提出了有效解决方案。基于CAFFE平台进行了大量仿真实验,确定了适宜于航迹模式分类的深度卷积网络结构和网络参数。实验结果表明,该方法能有效提高蛇形机动航迹识别的鲁棒性。
推荐文章
基于卷积神经网络的植物图像识别APP开发——"植鉴"
深度学习
TensorFlow框架
Inception-v3网络模型
'植鉴'APP
利用卷积神经网络改进迭代深度学习算法的图像识别方法研究
深度学习
卷积神经网络(CNN)
自适应
图像识别
层次化迭代
基于多尺度卷积神经网络模型的手势图像识别
卷积神经网络
卷积核
深度学习
特征提取
手势识别
二值化
基于深度卷积神经网络的车型识别研究
深度学习
卷积神经网络
支持向量机
高速公路
车型识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度卷积神经网络的蛇形机动航迹图像识别
来源期刊 火力与指挥控制 学科 工学
关键词 蛇形机动 图像识别 深度卷积神经网络 CAFFE
年,卷(期) 2016,(5) 所属期刊栏目 综述
研究方向 页码范围 66-70
页数 5页 分类号 TP271
字数 4177字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 梅卫 31 124 6.0 8.0
2 王刚 15 82 5.0 8.0
3 郑昌艳 4 12 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (368)
参考文献  (6)
节点文献
引证文献  (6)
同被引文献  (19)
二级引证文献  (11)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(5)
  • 参考文献(2)
  • 二级参考文献(3)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(4)
  • 引证文献(0)
  • 二级引证文献(4)
2019(9)
  • 引证文献(3)
  • 二级引证文献(6)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
蛇形机动
图像识别
深度卷积神经网络
CAFFE
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
火力与指挥控制
月刊
1002-0640
14-1138/TJ
大16开
山西太原193号信箱
22-134
1976
chi
出版文献量(篇)
9188
总下载数(次)
26
总被引数(次)
34280
论文1v1指导