基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
大型水电站地下厂房多采用分层分区开挖方法,施工期围岩变形受施工程序的影响呈强烈的非线性特点.针对传统回归模型对此类地下厂房围岩变形预测精度较低的问题,考虑了影响围岩变形的主要因素,采用遗传算法优化BP神经网络,结合动态分析法建立了施工期围岩变形预测的GA-BP模型.GA-BP模型在向家坝地下厂房运用结果表明,与回归模型相比,GA-BP预测模型提高了预测结果的精度与稳定性,适合施工现场的监测分析与预测.
推荐文章
基于GA-BP神经网络算法的马铃薯晚疫病预测模型
马铃薯晚疫病
遗传算法
BP神经网络
归一化处理
基于GA-BP神经网络的城市用水量预测
城市用水
用水量预测
BP神经网络
预测建模
网络训练
仿真分析
基于GA-BP神经网络的电力系统负荷预测研究
电力系统
负荷预测
BP神经网络
遗传算法
GA-BP
基于GA-BP神经网络的粗粒土渗透系数预测
粗粒土
渗透系数
BP神经网络
遗传算法
孔隙比
级配
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 GA-BP遗传神经网络在地下厂房变形预测中的应用
来源期刊 水电能源科学 学科 工学
关键词 地下厂房 施工期 围岩变形 遗传算法 BP神经网络
年,卷(期) 2016,(6) 所属期刊栏目 水利水电工程
研究方向 页码范围 150-152,164
页数 4页 分类号 TV731.6
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈新 四川大学水利水电学院 70 491 12.0 20.0
2 张倩 四川大学水利水电学院 77 358 10.0 17.0
3 魏成勇 四川大学水利水电学院 6 1 1.0 1.0
4 周武松 四川大学水利水电学院 4 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (69)
共引文献  (37)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(9)
  • 参考文献(1)
  • 二级参考文献(8)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
地下厂房
施工期
围岩变形
遗传算法
BP神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
水电能源科学
月刊
1000-7709
42-1231/TK
大16开
武汉市洪山区珞喻路1037号华中科技大学内
38-111
1983
chi
出版文献量(篇)
9307
总下载数(次)
26
论文1v1指导