基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来,卷积神经网络(CNN)凭借其强大的特征学习能力在视觉识别领域取得重要进展。针对CNN全连接层对图像平移、旋转、缩放等变换比较敏感的问题,提出了一种混合模型——卷积词袋网络(BoCW-Net)。它将BoW模型嵌入CNN结构中并代替全连接层,通过端到端的方式学习特征、字典和分类器。为实现BoCW-Net整个网络的有监督学习,提出基于方向相似度的BoCW编码。同时,为充分利用中层特征和高层特征的鉴别性,将中层辅助分类器与高层分类器集成,形成主-辅集成分类器。实验结果表明:相比全连接层,BoCW表示对各种变换具有更强的不变性;主-辅集成分类器能有效融合中层、高层特征,提高BoCW-Net的识别性能;相比新近发展的CNN模型,BoCW-Net在CIFAR-10、CIFAR-100和MNIST数据库上均取得了改进的识别性能,最终分别获得4.88%、22.48%和0.21%的测试错误率。
推荐文章
一种基于优化“词袋”模型的物体识别方法
物体识别
“词袋”模型
特征融合
K-means++聚类
支撑向量机
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
基于稀疏卷积神经网络的考生识别算法
考生识别
卷积神经网络
人脸识别
身份验证
多通道输入
方法比
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积词袋网络的视觉识别
来源期刊 计算机工程与应用 学科 工学
关键词 卷积神经网络 卷积词袋(BoCW)表示 主-辅集成分类器
年,卷(期) 2016,(21) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 180-187
页数 8页 分类号 TP183
字数 6414字 语种 中文
DOI 10.3778/j.issn.1002-8331.1603-0349
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 毛亮 华南农业大学电子工程学院 6 35 3.0 5.0
2 薛月菊 华南农业大学电子工程学院 38 416 12.0 19.0
3 刘洪山 华南农业大学电子工程学院 37 141 7.0 10.0
4 薛昆南 华南农业大学电子工程学院 2 8 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (14)
参考文献  (4)
节点文献
引证文献  (6)
同被引文献  (12)
二级引证文献  (11)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(4)
  • 引证文献(3)
  • 二级引证文献(1)
2019(7)
  • 引证文献(2)
  • 二级引证文献(5)
2020(5)
  • 引证文献(0)
  • 二级引证文献(5)
研究主题发展历程
节点文献
卷积神经网络
卷积词袋(BoCW)表示
主-辅集成分类器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导