基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于稀疏表示的人脸识别研究,非线性特征的选择研究较少。提出分层使用人脸图像的小波特征,进行稀疏表示人脸识别框架。框架首先对样本人脸进行小波变换,构造小波低频和小波高频过完备人脸字典;识别阶段首先使用人脸图像的小波低频特征进行稀疏表示,计算类别模糊稀疏,然后根据模糊系数输出类别标签或进行高频特征的稀疏表示与识别。实验结果表明,基于小波特征和稀疏表示的人脸识别分层框架提高了识别的准确率,且对遮挡很鲁棒。
推荐文章
基于SIFT稀疏表示的人脸识别算法
人脸识别
尺度不变特征变换
FisherVector
主成分分析
稀疏表示
基于离散余弦变换和稀疏表示的人脸识别
人脸识别
离散余弦变换
稀疏表示
词袋
局部特征
基于稀疏表示与特征融合的人脸识别方法
人脸识别
稀疏表示
低秩恢复
特征融合
鲁棒性
泛化性能
基于核稀疏表示的人脸人耳融合识别算法的研究
融合识别
核稀疏表示
特征提取
加权串联融合
正交匹配追踪算法
鲁棒性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏表示与小波特征的人脸识别分层框架
来源期刊 计算机工程与应用 学科 工学
关键词 人脸识别 稀疏表示 分层框架 小波特征
年,卷(期) 2016,(14) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 142-145,171
页数 5页 分类号 TP391.4
字数 4298字 语种 中文
DOI 10.3778/j.issn.1002-8331.1409-0088
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 翟素兰 安徽大学数学科学学院 27 129 6.0 9.0
2 谢文浩 安徽大学数学科学学院 4 16 3.0 4.0
3 曹庆 安徽大学数学科学学院 3 10 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (19)
参考文献  (14)
节点文献
引证文献  (7)
同被引文献  (21)
二级引证文献  (10)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(4)
  • 参考文献(1)
  • 二级参考文献(3)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(2)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(8)
  • 引证文献(1)
  • 二级引证文献(7)
2019(5)
  • 引证文献(2)
  • 二级引证文献(3)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸识别
稀疏表示
分层框架
小波特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导