原文服务方: 太原理工大学学报       
摘要:
在分析人脸超分辨率算法和二维稀疏表示的基础上,提出基于二维稀疏表示的人脸超分辨率重构算法。与一维稀疏表示中将图像块转换为列向量不同,本文考虑到二维图像列与列之间的近邻关系,对图像块进行二维稀疏表示;在字典训练中,对每组图像块的每一列训练高、低分辨率字典,提出二维K‐SVD算法对字典进行训练,减少字典训练消耗的时间,同时能够改善超分辨率人脸的质量。采用中科院CAS‐PEAL共享人脸图像数据库进行仿真实验,实验结果从主、客观质量均验证了本文算法的有效性及先进性。
推荐文章
基于稀疏表示和近邻嵌入的图像超分辨率重构
超分辨率重构
稀疏表示
过完备字典
图像块近邻
权重
基于稀疏表示和自相似学习的图像超分辨率重构
超分辨率重构
稀疏表示
附加信息
自相似学习
基于稀疏表示的图像超分辨率重建算法
超分辨率重建
稀疏表示
L1范数优化
字典学习
粒子群优化算法
特征提取算子
基于稀疏表示的图像超分辨率重建算法设计
超分辨率重建
稀疏表示
字典学习
图像
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于二维稀疏表示的人脸超分辨率重构算法
来源期刊 太原理工大学学报 学科
关键词 人脸超分辨率 局部分块 二维稀疏表示 二维K-SVD
年,卷(期) 2015,(2) 所属期刊栏目
研究方向 页码范围 183-187
页数 5页 分类号 TP301
字数 语种 中文
DOI 10.16355/j.cnki.issn1007-9432tyut.2015.02.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张月琴 太原理工大学计算机科学与技术学院 49 336 10.0 16.0
2 王尔卓 太原理工大学计算机科学与技术学院 1 3 1.0 1.0
3 于杨 山西师范大学数学与计算机科学学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (7)
参考文献  (6)
节点文献
引证文献  (3)
同被引文献  (15)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸超分辨率
局部分块
二维稀疏表示
二维K-SVD
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
太原理工大学学报
双月刊
1007-9432
14-1220/N
大16开
太原市迎泽西大街79号3337信箱
1957-01-01
汉语
出版文献量(篇)
4103
总下载数(次)
0
相关基金
山西省自然科学基金
英文译名:Shanxi Natural Science Foundation
官方网址:http://sxnsfc.sxinfo.gov.cn/sxnsf/index.aspx
项目类型:
学科类型:
论文1v1指导