原文服务方: 纺织高校基础科学学报       
摘要:
基于稀疏表示的超分辨率重构算法效果依赖于样本图像信息,难以保证重构质量;基于图像结构自相似的算法利用了图像自身的附加信息,但是这些信息不足以获得很好的重构效果。本文综合利用样本图像信息和待处理低分辨率图像自身信息,提出了一种新的方法。在基于稀疏表示的框架下把与待重建图像相似的高分辨率样本图像信息提取出来用于重构,利用低分辨率图像自身的附加信息对上一步的重构图像进行修复,进一步提高重构质量。数值实验结果表明,本算法对图像的细节部分具有更好的重构效果。
推荐文章
基于稀疏表示和近邻嵌入的图像超分辨率重构
超分辨率重构
稀疏表示
过完备字典
图像块近邻
权重
基于图像自相似性的多尺度稀疏表示肺4D-CT图像超分辨率重建
四维计算机断层摄影
超分辨率重建
图像自相似性
多尺度分析
稀疏表示
基于稀疏表示的图像超分辨率重建算法
超分辨率重建
稀疏表示
L1范数优化
字典学习
粒子群优化算法
特征提取算子
基于二维稀疏表示的人脸超分辨率重构算法
人脸超分辨率
局部分块
二维稀疏表示
二维K-SVD
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏表示和自相似学习的图像超分辨率重构
来源期刊 纺织高校基础科学学报 学科
关键词 超分辨率重构 稀疏表示 附加信息 自相似学习
年,卷(期) 2013,(4) 所属期刊栏目 应用研究
研究方向 页码范围 548-552
页数 5页 分类号 TN911.73
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李强 西北工业大学理学院 116 784 15.0 18.0
2 林文晓 西北工业大学理学院 3 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (1)
同被引文献  (15)
二级引证文献  (0)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
超分辨率重构
稀疏表示
附加信息
自相似学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
纺织高校基础科学学报
季刊
1006-8341
61-1296/TS
大16开
1987-01-01
chi
出版文献量(篇)
2271
总下载数(次)
0
总被引数(次)
5439
论文1v1指导