原文服务方: 西安交通大学学报       
摘要:
针对基于稀疏表示的人脸超分辨率算法存在的字典尺寸大、训练时间长等问题,提出一种基于位置字典对的超分辨率重建方法.由于同一位置的人脸图像块具有相似的结构和内容,更有可能用相同的字典原子进行线性组合表示,因此把训练人脸图像按位置分块,首先为每个位置训练一个位置字典对,利用获得的多个位置字典对,对低分辨率测试人脸图像进行基本重建,然后应用残差补偿方法对位置块进行补偿.实验结果表明,由所提方法重建的人脸图像具有更好的视觉效果,与应用原始图像块进行稀疏表示的图像超分辨率算法相比,平均图像结构相似度指标值提高了0.082,同时字典训练时间缩短了约5倍.
推荐文章
基于在线字典学习的人脸超分辨率重建
在线字典学习
超分辨率重建
含噪人脸图像
稀疏编码
全局重建和位置块残差补偿的人脸图像超分辨率算法
人脸图像
超分辨率
残差补偿
位置块
一种用于监控系统中的人脸超分辨率图像重建方法
超分辨率重建
块匹配
图像序列
监控系统
基于二维稀疏表示的人脸超分辨率重构算法
人脸超分辨率
局部分块
二维稀疏表示
二维K-SVD
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 利用位置字典对的人脸图像超分辨率方法
来源期刊 西安交通大学学报 学科
关键词 人脸图像 超分辨率 稀疏表示 位置字典
年,卷(期) 2012,(6) 所属期刊栏目
研究方向 页码范围 7-11
页数 分类号 TN911.73
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 齐春 西安交通大学电子与信息工程学院 55 787 14.0 27.0
2 李玉花 西安交通大学电子与信息工程学院 1 5 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (6)
共引文献  (3)
参考文献  (5)
节点文献
引证文献  (5)
同被引文献  (5)
二级引证文献  (3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(3)
  • 引证文献(3)
  • 二级引证文献(0)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
人脸图像
超分辨率
稀疏表示
位置字典
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西安交通大学学报
月刊
0253-987X
61-1069/T
大16开
1960-01-01
chi
出版文献量(篇)
7020
总下载数(次)
0
总被引数(次)
81310
论文1v1指导