基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
已有的急速学习机(Extreme Learning Machine)的学习精度受隐节点数目的影响很大.无论是已提出的单隐层急速学习机还是多隐层神经网络,都是先确定隐藏层数,再通过增加每一层的神经元个数来提高精度.但当训练集规模很大时,往往需要引入很多的隐节点,导致违逆矩阵计算复杂度大,从而不利于学习效率的提高.提出逐层可加的急速学习机MHL-ELM(Extreme Learning Machine with Incremental Hidden Layers),其思想是首先对当前隐藏层神经元(数目不大且不寻优,因而复杂度小)的权值进行随机赋值,用ELM思想求出逼近误差;若误差达不到要求,再增加一个隐含层.然后运用ELM的思想对当前隐含层优化.逐渐增加隐含层,直至满足误差精度为止.除此以外,MHL-ELM的算法复杂度为MΣl=1O(Nl3).实验使用10个UCI,keel真实数据集,通过与BP,OP-ELM等传统方法进行比较,表明MHL-ELM学习方法具有更好的泛化性,在学习精度和学习速度方面都有很大的提升.
推荐文章
基于并行学习的多层极限学习机
神经网络
稀疏编码
极限学习机
并行学习
基于粒子群优化算法的最优极限学习机
粒子群算法
极限学习机
隐层节点
基于核的学习机研究综述
核方法
有监督学习算法
无监督学习算法
支持向量机
小波核极限学习机分类器
极限学习机
核学习机
小波分析
小波核函数
分类器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 逐层可加的急速学习机
来源期刊 计算机工程与应用 学科 工学
关键词 急速学习机 多隐层神经网络 逐层优化
年,卷(期) 2016,(8) 所属期刊栏目 理论与研发
研究方向 页码范围 7-12
页数 6页 分类号 TP391
字数 5540字 语种 中文
DOI 10.3778/j.issn.1002-8331.1502-0014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王士同 江南大学数字媒体学院 528 3424 23.0 37.0
2 许小龙 江南大学数字媒体学院 5 4 1.0 1.0
3 郑雪辉 江南大学数字媒体学院 2 5 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(2)
  • 参考文献(2)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
急速学习机
多隐层神经网络
逐层优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导