基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出基于单类支持向量机的异常声音在线检测算法。该算法针对公共场合正常的环境声音,训练一个单类支持向量机模型,用来判断声音是否属于正常的环境声音,若不是则属于需要进一步识别的异常声音。采用窗长2秒的滑动窗对声音进行分窗,对每一个窗内的声音分帧并提取梅尔倒谱系数,短时能量,频谱质心,短时平均过零率等特征。采用基于帧之间互相关系数的方法对声音自动分段。最后对分段声音的判别结果进行中值滤波。当有连续多个帧被判别为异常时判定有异常声音出现。最后检验了算法在地铁背景条件下六类异常声音的漏检率和每小时误检次数,结果表明算法能有效检测到异常声音的发生而且误检次数较低。
推荐文章
基于主元分析和支持向量机的异常检测
主元分析
支持向量机
异常检测
基于支持向量机的Web用户行为异常检测方法
异常检测
One-Class支持向量机
支持向量数据描述
利用单类支持向量机分割血细胞图像
彩色图像分割
单类支持向量机
均值移动
血细胞
支持向量机在网络异常入侵检测中的应用
网络入侵检测
异常检测
支持向量机
统计学习理论
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于单类支持向量机的异常声音检测
来源期刊 电子设计工程 学科 工学
关键词 单类支持向量机 异常声音检测 特征提取 音频监控
年,卷(期) 2016,(23) 所属期刊栏目 计算机技术与应用
研究方向 页码范围 19-22
页数 4页 分类号 TN912
字数 4072字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 乔树山 中国科学院大学微电子研究所 53 272 9.0 14.0
2 杨骏 中国科学院大学微电子研究所 7 39 3.0 6.0
3 陈志全 中国科学院大学微电子研究所 2 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (33)
参考文献  (5)
节点文献
引证文献  (2)
同被引文献  (8)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(2)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
单类支持向量机
异常声音检测
特征提取
音频监控
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子设计工程
半月刊
1674-6236
61-1477/TN
大16开
西安市高新区高新路25号瑞欣大厦10A室
52-142
1994
chi
出版文献量(篇)
14564
总下载数(次)
54
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导