基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Web评论研究技术中,其情感分析就是将评论的情感极性进行褒贬分类的过程。本文将非负矩阵分解(nonnegative matrix decomposition,NMF)和支持向量机(support vector machine,SVM)相结合,构造出一种基于NMF的支持向量机(NMF-SVM)分类算法。该算法利用NMF对初始的"词—文档"向量矩阵进行有效降维,提取潜在语义,最后利用支持向量机对重新构造的"词-文本"向量模型进行情感分类。实验结果证明,该分类算法的准确率优于比传统的SVM算法,具有一定应用价值。
推荐文章
跨领域中文评论的情感分类研究
跨领域
情感分类
知网
有监督机器学习方法
支持向量机
基于在线评论的网络视频情感分类平台设计与实现
在线评论
网络视频
情感分类
平台设计
情感极性
情感相似性
基于联合法选取特征的产品评论情感分类研究
文本分类
产品评论
情感倾向性
特征量选取
联合法选取特征
基于情感极性与SMOTE过采样的虚假评论识别方法
虚假评论
情感极性
用户行为
逻辑回归
随机森林
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于NMF的Web评论情感分类方法研究
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 Web评论 情感极性分类 非负矩阵分解 支持向量机
年,卷(期) 2016,(6X) 所属期刊栏目
研究方向 页码范围 167-170
页数 4页 分类号 TP391.1
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘立波 宁夏大学信息工程学院 56 303 9.0 16.0
2 任静 宁夏大学信息工程学院 11 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Web评论
情感极性分类
非负矩阵分解
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导