基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
利用标准BP神经网络建立短期电力负荷预测模型,其算法存在最终解过于依赖初值和过学习现象,并且训练过程中存在局部极小问题且预测精度低等缺点.为了提高电力负荷模型的预测精度,通过阅读相关文献,构建了基于改进BP神经网络的短期电力负荷预测模型,该模型采用遗传算法对权值和阈值进行初始化,以相对误差和附加动量法相结合的方式去计算权值修正量.比较改进后的BP算法和标准BP算法在短期电力负荷预测的效果,从实验仿真的效果表明改进后的模型提高了预测精度.
推荐文章
电力系统短期负荷预测的改进BP算法
短期负荷预测
人工神经网络
改进算法
天气因素在短期电力负荷预测中的应用
BP人工神经网络
短期电力负荷预测
电力系统
天气因素
基于BP神经网络的电力系统短期负荷预测
负荷预测
神经网络
遗传算法
基于 BP 神经网络系统的短期电力负荷预测
电力负荷预测
神经网络
BP 算法
MATLAB
误差分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进的BP算法在短期电力负荷预测中的应用
来源期刊 信息技术与网络安全 学科 工学
关键词 短期负荷预测 BP神经网络 遗传算法 相对误差 附加动量
年,卷(期) 2017,(14) 所属期刊栏目 人工智能
研究方向 页码范围 61-63,67
页数 4页 分类号 TM715
字数 3684字 语种 中文
DOI 10.19358/j.issn.1674-7720.2017.14.019
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王健 东北林业大学信息与计算机工程学院 50 164 8.0 10.0
2 李妍 东北林业大学信息与计算机工程学院 5 13 3.0 3.0
3 李建伟 东北林业大学信息与计算机工程学院 2 29 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (87)
共引文献  (244)
参考文献  (10)
节点文献
引证文献  (4)
同被引文献  (8)
二级引证文献  (13)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(8)
  • 参考文献(0)
  • 二级参考文献(8)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(11)
  • 参考文献(1)
  • 二级参考文献(10)
2009(12)
  • 参考文献(1)
  • 二级参考文献(11)
2010(9)
  • 参考文献(1)
  • 二级参考文献(8)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(3)
  • 引证文献(2)
  • 二级引证文献(1)
2019(10)
  • 引证文献(2)
  • 二级引证文献(8)
2020(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
短期负荷预测
BP神经网络
遗传算法
相对误差
附加动量
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术与网络安全
月刊
2096-5133
10-1543/TP
大16开
北京市海淀区清华东路25号(北京927信箱)
82-417
1982
chi
出版文献量(篇)
10909
总下载数(次)
33
总被引数(次)
35987
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导