基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了面向微博应用的新闻文本自动摘要研究方法.利用互信息对新闻文本中词语和句子之间的语义特征进行计算,根据其关联度对句子进行主题划分,赋予主题句较高的权重,同时从文本中抽取多种组合特征,利用Ranking SVM对句子进行排序,从而得到自动摘要.在NLP&CC2015面向微博中文新闻自动摘要评测数据集上进行对比实验,取得了良好效果,证明该方法的有效性.
推荐文章
基于SVM和CRF多特征组合的微博情感分析
微博
情感分析
支持向量机
条件随机场
基于矩阵分解和子模最大化的微博新闻摘要方法
子模属性
正交矩阵分解
新闻摘要
抽取式摘要
微博
基于多特征融合的中文微博评价对象抽取方法
评价对象
评价对象候选集
句法分析
语义角色标注
支持向量机
基于SVM的微博转发规模预测方法
微博
转发行为
转发规模
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多特征和Ranking SVM的微博新闻自动摘要研究
来源期刊 郑州大学学报(理学版) 学科 工学
关键词 互信息 语义特征 主题句 Ranking SVM 新闻文本自动摘要
年,卷(期) 2017,(2) 所属期刊栏目
研究方向 页码范围 43-47
页数 5页 分类号 TP391
字数 4031字 语种 中文
DOI 10.13705/j.issn.1671-6841.2016239
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 昝红英 郑州大学信息工程学院 58 759 11.0 26.0
2 李孟爽 郑州大学信息工程学院 1 3 1.0 1.0
3 贾会贞 郑州大学信息工程学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (16)
共引文献  (13)
参考文献  (8)
节点文献
引证文献  (3)
同被引文献  (0)
二级引证文献  (0)
1958(1)
  • 参考文献(1)
  • 二级参考文献(0)
1969(1)
  • 参考文献(1)
  • 二级参考文献(0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
互信息
语义特征
主题句
Ranking SVM
新闻文本自动摘要
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
郑州大学学报(理学版)
季刊
1671-6841
41-1338/N
大16开
郑州市高新技术开发区科学大道100号
36-191
1962
chi
出版文献量(篇)
2278
总下载数(次)
0
总被引数(次)
9540
论文1v1指导