基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
农产品检测技术一直以来都是农业领域研究的热点问题,但以往的识别的错误率都居高不下,该文采用了基于有深度学习机制的卷积神经网络方法来提高识别率.首先对采集到的图像进行预处理得到规范化的二值化图像,再利用Matlab软件进行神经网络的建模,利用其网络自学习能力进行训练与测试,通过仿真验证卷积神经网络对辣椒图像的精确识别率.并与传统BP神经网络进行比较,表明其具有很好的鲁棒性和泛化能力.
推荐文章
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
基于卷积神经网络的车牌识别
卷积神经网络
车牌识别
模型训练
权值共享
基于稀疏卷积神经网络的考生识别算法
考生识别
卷积神经网络
人脸识别
身份验证
多通道输入
方法比
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的辣椒识别
来源期刊 天津理工大学学报 学科 工学
关键词 深度学习 卷积神经网络 BP神经网络 Matlab
年,卷(期) 2017,(3) 所属期刊栏目
研究方向 页码范围 12-15
页数 4页 分类号 TP273
字数 2122字 语种 中文
DOI 10.3969/j.issn.1673-095X.2017.003.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李莲 天津理工大学自动化学院 21 120 6.0 10.0
2 丁文宽 天津理工大学自动化学院 2 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (67)
共引文献  (75)
参考文献  (10)
节点文献
引证文献  (2)
同被引文献  (7)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(8)
  • 参考文献(1)
  • 二级参考文献(7)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(8)
  • 参考文献(1)
  • 二级参考文献(7)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(7)
  • 参考文献(3)
  • 二级参考文献(4)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(6)
  • 参考文献(3)
  • 二级参考文献(3)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
卷积神经网络
BP神经网络
Matlab
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
天津理工大学学报
双月刊
1673-095X
12-1374/N
大16开
天津市西青区宾水西道391号
1984
chi
出版文献量(篇)
2405
总下载数(次)
4
总被引数(次)
13943
论文1v1指导