基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种基于蚁群算法的Criminisi图像修复算法,将蚁群算法应用到Criminisi图像修复算法的最佳匹配模板搜索中.首先计算待修复区域优先权;然后蚁群寻找搜索路径中留下的信息素,沿着信息素最多的路径寻找到最佳匹配模板;最后更新置信度,直到修复结束.实验结果表明,修复后的图像PSNR较高不易陷入局部最优,能较快速地搜索到最佳匹配模板.
推荐文章
Criminisi图像修复算法的优化
Criminisi算法
图像修复
可变大小样本块
模块相似性度量
颜色直方图
改进蚁群优化算法的图像边缘检测
蚁群优化算法
外激素
像素域
图像边缘检测
数据结构控制
检测效率
基于蚁群优化算法的图像边缘检测
边缘检测
蚁群算法
蚁群优化算法
基于蚁群算法的多光谱遥感图像分类
多光谱遥感图像
分类
光谱特征
形状特征
蚁群算法
支持向量机分类器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于蚁群算法的Criminisi图像修复
来源期刊 红外技术 学科 工学
关键词 蚁群算法 Criminisi算法 最佳匹配模板
年,卷(期) 2017,(3) 所属期刊栏目 图像处理与仿真
研究方向 页码范围 221-225
页数 5页 分类号 TP391.41
字数 3571字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴谨 武汉科技大学信息科学与工程学院 100 796 14.0 24.0
2 郑玉婷 武汉科技大学信息科学与工程学院 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (30)
参考文献  (9)
节点文献
引证文献  (6)
同被引文献  (32)
二级引证文献  (1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(4)
  • 参考文献(3)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(5)
  • 引证文献(4)
  • 二级引证文献(1)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
蚁群算法
Criminisi算法
最佳匹配模板
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
红外技术
月刊
1001-8891
53-1053/TN
大16开
昆明市教场东路31号《红外技术》编辑部
64-26
1979
chi
出版文献量(篇)
3361
总下载数(次)
13
总被引数(次)
30858
相关基金
湖北省自然科学基金
英文译名:Natural Science Foundation of Hubei Province
官方网址:http://www.shiyanhospital.com/my/art/viewarticle.asp?id=79
项目类型:重点项目
学科类型:
论文1v1指导