基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
利用预条件Gauss-Seidel迭代法来求解三对角方程组,给出其具体形式和迭代矩阵.针对三对角L-矩阵方程组的情形,给出其与经典Gauss-Seidel迭代法收敛性的比较定理,并通过数值实例验证了所给结论.
推荐文章
非对角占优三对角方程组的一类解法及其数值实验
非对角占优
三对角方程组
对称正定
对角占优
数值实验
块三对角线性方程组的并行迭代解法
块三对角线性方程组
并行算法
LU分解
HP rx2600集群
预条件USSOR迭代法在L矩阵下的比较结果
预条件
谱半径
比较定理
USSOR迭代方法
周期性三对角阵方法与反复迭代法的比较
CTDMA方法
周期性边界条件
同位圆柱坐标
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 三对角L-矩阵方程组的一类预优迭代法
来源期刊 高师理科学刊 学科 数学
关键词 三对角方程组 L-矩阵 Gauss-Seidel迭代法 预条件
年,卷(期) 2017,(10) 所属期刊栏目
研究方向 页码范围 14-17
页数 4页 分类号 O241.7
字数 2034字 语种 中文
DOI 10.3969/j.issn.1007-9831.2017.10.005
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴梅君 南通大学理学院 16 40 4.0 5.0
2 张云鹏 南通大学理学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
三对角方程组
L-矩阵
Gauss-Seidel迭代法
预条件
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
高师理科学刊
月刊
1007-9831
23-1418/N
大16开
齐齐哈尔市文化大街42号
1979
chi
出版文献量(篇)
5509
总下载数(次)
5
总被引数(次)
11713
论文1v1指导