基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了降低分布式协同估计算法的计算量并改善其收敛性能,提出了基于压缩感知(CS)和递归最小二乘(RLS)的分布式协同估计算法.该算法在传统RLS分布式协同估计算法的基础上引入压缩感知技术,首先在压缩域中进行递归最小二乘运算,然后利用压缩感知重构算法得到未知参数向量的估计值.提出的算法能够在增量式策略和两种模式的扩散式策略下实现对未知向量的有效估计.理论分析和仿真结果表明,该算法一方面降低了RLS分布式协同估计算法的计算量,另一方面保持较快的收敛速度与良好的均方误差性能.
推荐文章
基于时空相关性的分布式压缩感知多假设预测重构算法
分布式压缩感知
多假设预测
时空相关性
稀疏重构
基于双边信息的分布式视频压缩感知模型研究
双边信息
分布式视频压缩感知
重构
残差
基于信息滤波的分布式多传感器状态估计算法
信息滤波
Kalman滤波
多传感器
分布式
状态估计
残差分布式视频压缩感知
视频压缩感知
分布式视频编码
梯度投影
联合稀疏
残差
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于压缩感知的分布式协同估计算法
来源期刊 电讯技术 学科 工学
关键词 分布式估计 压缩感知 递归最小二乘 增量式策略 扩散式策略
年,卷(期) 2017,(4) 所属期刊栏目 应用基础与前沿技术
研究方向 页码范围 377-381
页数 5页 分类号 TN911
字数 3511字 语种 中文
DOI 10.3969/j.issn.1001-893x.2017.04.001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 姚彦鑫 北京信息科技大学信息与通信工程学院 26 32 3.0 4.0
2 张亚东 北京信息科技大学信息与通信工程学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (52)
共引文献  (19)
参考文献  (11)
节点文献
引证文献  (3)
同被引文献  (16)
二级引证文献  (2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(8)
  • 参考文献(1)
  • 二级参考文献(7)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(4)
  • 参考文献(4)
  • 二级参考文献(0)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
分布式估计
压缩感知
递归最小二乘
增量式策略
扩散式策略
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电讯技术
月刊
1001-893X
51-1267/TN
大16开
成都市营康西路85号
62-39
1958
chi
出版文献量(篇)
5911
总下载数(次)
21
总被引数(次)
28744
论文1v1指导