基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了克服传统手势识别方法复杂的人工提取特征值操作,引入卷积神经网络进行手势识别,该算法可以直接对原始图像进行处理,具有局部感知域、权值共享和池化等特点,可以有效提取图像特征.使用Marcel手势识别数据集对框架进行训练,采用交叉验证的方法对系统进行评估,实验结果表明该方法可以识别经过训练的手势,且精确度高,鲁棒性强.
推荐文章
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
基于Leap Motion和卷积神经网络的手势识别
手势识别
高精度
Leap Motion
灰度处理
卷积神经网络
深度学习
基于多尺度卷积神经网络模型的手势图像识别
卷积神经网络
卷积核
深度学习
特征提取
手势识别
二值化
基于稀疏卷积神经网络的考生识别算法
考生识别
卷积神经网络
人脸识别
身份验证
多通道输入
方法比
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的手势识别算法设计与实现
来源期刊 微型机与应用 学科 工学
关键词 卷积神经网络 局部感受域 权值共享 池化 手势识别
年,卷(期) 2017,(20) 所属期刊栏目 图像与多媒体
研究方向 页码范围 51-53
页数 3页 分类号 TP391.9
字数 3174字 语种 中文
DOI 10.19358/j.issn.1674-7720.2017.20.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙旭飞 福州大学物理与信息工程学院 21 49 3.0 6.0
2 张斌 福州大学物理与信息工程学院 8 19 3.0 4.0
3 吴一鹏 福州大学物理与信息工程学院 2 7 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (174)
参考文献  (7)
节点文献
引证文献  (7)
同被引文献  (11)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(4)
  • 引证文献(4)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
局部感受域
权值共享
池化
手势识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术与网络安全
月刊
2096-5133
10-1543/TP
大16开
北京市海淀区清华东路25号(北京927信箱)
82-417
1982
chi
出版文献量(篇)
10909
总下载数(次)
33
总被引数(次)
35987
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导