基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Aiming at the problem that the mathematical expressions in unstructured text fields of documents are hard to be extracted automatically, rapidly and effectively, a method based on Hidden Markov Model (HMM) is proposed. Firstly, this method trained the HMM model through employing the symbol combination features of mathematical expressions. Then, some preprocessing works such as removing labels and filtering words were carried out. Finally, the preprocessed text was converted into an observation sequence as the input of the HMM model to determine which is the mathematical expression and extracts it. The experimental results show that the proposed method can effectively extract the mathematical expressions from the text fields of documents, and also has the relatively high accuracy rate and recall rate.
推荐文章
基于 EPICS 的 J-TEXT CODAC系统
CODAC系统
托卡马克
ITER
EPICS
J-TEXT托卡马克数据采集系统设计
J-TEXT
数据采集
MDSplus
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
Effects of biochar-based fertilizers on nutrient leaching in a tobacco-planting soil
Biochar-based fertilizer
Soil column
Nutrient elements
Leaching loss
Immobilization
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Mathematical Expression Extraction in Text Fields of Documents Based on HMM
来源期刊 电脑和通信(英文) 学科 数学
关键词 Mathematical Expression EXTRACTION Hidden MARKOV Model TEXT FIELDS DOCUMENTS SYMBOL Combination Features
年,卷(期) 2017,(14) 所属期刊栏目
研究方向 页码范围 1-13
页数 13页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Mathematical
Expression
EXTRACTION
Hidden
MARKOV
Model
TEXT
FIELDS
DOCUMENTS
SYMBOL
Combination
Features
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导