特征提取是软件缺陷预测技术研究中的重要环节,而现有的特征提取方法无法准确获得特征之间的非线性依赖关系,因而无法提高软件缺陷预测的准确性.针对该问题,本文构建基于降噪编码器和支持向量机的软件缺陷预测模型(Denoising Autoencoder Support Vector Machine,DA-SVM).首先利用降噪编码器进行特征提取,然后将提取的特征作为支持向量机的输入向量,最后再进行软件缺陷预测.实验结果表明,DA-SVM提高了软件缺陷预测的准确度,同时降低了历史数据中的噪声,增强了软件预测模型的鲁棒性.