基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来,卷积神经网络(CNN)已经成为很多科学领域的研究热点之一.卷积神经网络作为一种深度模型可以直接作用于原始输入,不需要手动设计特征描述子.与传统神经网络相比识别效果有很大的提高.它已经建立了一类强大的模型来处理图像识别,并对其扩展到三维卷积神经网络(3D CNN)来处理视频识别问题.在此基础上,笔者对三维卷积神经网络做了如下改进:用Gabor小波核来初始化卷积操作,以达到模拟人类视觉系统对视觉刺激的响应;在网络训练的过程中加入Dropout技术,随机选择删除部分神经元,以此来提高网络的泛化能力,有效防止过拟合.提出的方法在KTH和UCF— YouTube数据集上进行验证,取得了很好地识别效果.
推荐文章
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于双流卷积神经网络的改进人体行为识别算法
人体行为识别
深度学习
双流卷积神经网络
模型融合
基于改进的卷积神经网络的人脸识别算法
人脸识别
深度学习
卷积神经网络
Dropout技术
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Dropout卷积神经网络的行为识别
来源期刊 广西民族大学学报(自然科学版) 学科 工学
关键词 卷积神经网络 Gabor小波核 Dropout技术
年,卷(期) 2017,(1) 所属期刊栏目 计算机技术
研究方向 页码范围 76-82
页数 7页 分类号 TP391.41
字数 5248字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 宣士斌 广西民族大学信息科学与工程学院 60 255 8.0 12.0
2 范晓杰 广西民族大学信息科学与工程学院 4 10 1.0 3.0
3 唐凤 广西民族大学信息科学与工程学院 4 10 1.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (156)
参考文献  (6)
节点文献
引证文献  (8)
同被引文献  (23)
二级引证文献  (4)
1933(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(5)
  • 引证文献(5)
  • 二级引证文献(0)
2019(4)
  • 引证文献(1)
  • 二级引证文献(3)
2020(3)
  • 引证文献(2)
  • 二级引证文献(1)
研究主题发展历程
节点文献
卷积神经网络
Gabor小波核
Dropout技术
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
广西民族大学学报(自然科学版)
季刊
1673-8462
45-1350/N
大16开
南宁市大学东路188号
48-96
1994
chi
出版文献量(篇)
2860
总下载数(次)
13
总被引数(次)
7691
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导