基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出一种融合语义的隐马尔科夫模型用于文本分类的方法.将特征词的语义作为先验知识融合到隐马尔科夫分类模型中.通过信息增益提取特征词,用word2vec提取特征词语义,将每一个类别映射成一个隐马尔科夫分类模型,模型中状态转移过程就是该类文本生成过程.将待分文本与分类模型做相似度比较,取得最大类别输出概率.该方法不仅考虑特征词、词频、文档数量先验知识,而且将特征词语义融合到隐马尔科夫分类模型中.通过实验评估,取得了比原HMM模型和朴素贝叶斯分类模型更好的分类效果.
推荐文章
基于改进隐马尔可夫模型的文本分类研究
隐马尔可夫模型
文本分类
期望交叉熵(ECE)
χ2统计
TF-IDF方法
基于不同隐马尔科夫模型的图像识别方法
隐马尔科夫模型
E-HMM
图像识别
指纹识别
基于离散隐马尔科夫模型的语音识别技术
语音识别
隐马尔科夫模型
动态时间规整
人工神经网络
基于改进隐马尔科夫模型的鲁棒用户行为识别
隐马尔科夫模型
遗传算法
Baum-Welch算法
用户行为识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于隐马尔科夫模型与语义融合的文本分类
来源期刊 计算机应用与软件 学科 工学
关键词 隐马尔科夫模型 语义融合 word2vec 信息增益 文本分类
年,卷(期) 2017,(7) 所属期刊栏目 算法
研究方向 页码范围 303-307
页数 5页 分类号 TP3
字数 3965字 语种 中文
DOI 10.3969/j.issn.1000-386x.2017.07.056
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 高知新 辽宁工程技术大学理学院 7 56 5.0 7.0
2 徐林会 辽宁工程技术大学理学院 2 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (17)
参考文献  (10)
节点文献
引证文献  (4)
同被引文献  (12)
二级引证文献  (2)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(3)
  • 参考文献(3)
  • 二级参考文献(0)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
隐马尔科夫模型
语义融合
word2vec
信息增益
文本分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导