作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
图解码依存分析方法是一种重要的依存分析方法,优点是解码具有全局最优的特点,能够找到模型意义下的全局最佳依存树.传统图解码依存分析模型大多采用基于特征的线性评分模型,常常需要选取大量的人工特征,这一方面耗时费力,加剧了模型过拟合的风险,另一方面也显著降低了系统的运行效率.同时由于采用子图分解策略,传统图解码分析中的特征提取严重受到子图规模的限制,无法提取具有全局意义的分析特征.深度图解码依存分析研究部分解决了这些问题,本文概要介绍了近年来几个代表性的深度图解码依存分析研究工作,总结了国内外在深度图解码依存分析方面的现状和进展.
推荐文章
基于深度学习的肺部医学图像分析研究进展
深度学习
医学图像
肺部肿瘤
计算机辅助诊断
深度学习研究进展
深度学习
神经网络
模型
表示
堆栈
预训练
基于深度学习的人脸分析研究进展
深度学习
卷积神经网络
人脸数据库
人脸识别
人脸分析
基于深度学习的肺部医学图像分析研究进展
深度学习
医学图像
肺部肿瘤
计算机辅助诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的图解码依存分析研究进展
来源期刊 山西大学学报(自然科学版) 学科 工学
关键词 依存句法分析 图解码 深度学习
年,卷(期) 2017,(3) 所属期刊栏目 计算机科学与技术
研究方向 页码范围 442-453
页数 12页 分类号 TP391
字数 11659字 语种 中文
DOI 10.13451/j.cnki.shanxi.univ(nat.sci.).2017.03.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 常宝宝 北京大学计算语言学教育部重点实验室北京大学计算语言学研究所 27 445 12.0 21.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
依存句法分析
图解码
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山西大学学报(自然科学版)
季刊
0253-2395
14-1105/N
大16开
太原市坞城路92号
22-42
1960
chi
出版文献量(篇)
2646
总下载数(次)
7
总被引数(次)
12039
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导