基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了使传统的BP神经网络算法能够适用于中时交通流预测,提出一种基于遗传算法优化深层BP神经网络算法.将传统遗传算法优化的BP神经网络进行了优化和调整,分别在不同的隐含层数量、输入节点数量以及隐含层节点数量的条件下进行多次实验,从预测精度和运算效率两个方面综合考虑得到了针对中时交通流预测的最优神经网络结构.以此结构通过MATLAB R2016b进行仿真实验,精度指标采用平均相对误差(Mean Relative Error,MRE),准确率及均等系数(Equality Coefficient,EC)进行综合判断.结果表明,在30 min内,交通流预测的MRE低于3%,准确率和EC则分别高于95%和0.98,而预测延长至60 min内时,MRE仍然能够保持在低于7% 的水平,准确率和EC则分别保持在80% 和0.95以上.
推荐文章
基于遗传算法优化的BP神经网络研究应用
人工神经网络
BP神经网络
遗传算法
GA?BP神经网络
优化方法
搜索能力
基于遗传算法优化支持向量机的交通流量预测
支持向量机
遗传算法
城市交通流量
预测模型
基于PSO的BP神经网络-Markov船舶交通流量预测模型
船舶交通流量预测
BP神经网络
马尔科夫模型(Markov模型)
粒子群优化(PSO)
基于BP神经网络的城市交通流预测研究
非线性
BP神经网络
交通流预测
人工智能
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于遗传算法优化BP神经网络的交通流预测
来源期刊 交通与运输 学科 交通运输
关键词 中时交通流预测 人工智能 深层BP神经网络 遗传算法
年,卷(期) 2017,(z2) 所属期刊栏目 预测技术
研究方向 页码范围 32-36
页数 5页 分类号 U491
字数 3892字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵怀柏 12 27 2.0 5.0
2 宋晓鹏 5 17 2.0 4.0
3 王逸凡 3 10 1.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (54)
共引文献  (162)
参考文献  (14)
节点文献
引证文献  (10)
同被引文献  (22)
二级引证文献  (1)
1678(1)
  • 参考文献(0)
  • 二级参考文献(1)
1776(1)
  • 参考文献(0)
  • 二级参考文献(1)
1857(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(5)
  • 参考文献(2)
  • 二级参考文献(3)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(7)
  • 参考文献(2)
  • 二级参考文献(5)
2014(11)
  • 参考文献(0)
  • 二级参考文献(11)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(7)
  • 引证文献(7)
  • 二级引证文献(0)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
中时交通流预测
人工智能
深层BP神经网络
遗传算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
交通与运输
双月刊
1671-3400
31-1476/U
大16开
上海市汉口路193号324室
4-754
1985
chi
出版文献量(篇)
6248
总下载数(次)
9
总被引数(次)
10824
论文1v1指导