基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对遥感图像视觉对比度差、分辨率低及目标含有不同角度旋转的情况,在稀疏表示分类识别的基础上,提出一种基于扩展字典稀疏表示的遥感目标识别方法.首先将训练样本和待测样本进行二进小波变换增强,提取增强图像的SIFT特征构成特征字典,并将原始的训练字典改为训练-特征扩展字典进行稀疏表示,从而使字典更加具有判别能力,提高识别率.同时,分析了SIFT特征经随机投影后对识别率的影响.实验表明,该方法对遥感图像目标识别具有较好的鲁棒性.
推荐文章
基于增强字典稀疏表示分类的SAR目标识别方法
合成孔径雷达
目标识别
增强字典
稀疏表示分类
基于字典优化的稀疏表示的视频镜头分类
稀疏表示
字典优化
视频镜头分类
基于稀疏表示的水声信号分类识别
压缩感知
稀疏表示
水声信号
特征提取
基于SIFT稀疏表示的人脸识别算法
人脸识别
尺度不变特征变换
FisherVector
主成分分析
稀疏表示
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于扩展字典稀疏表示分类的遥感目标识别
来源期刊 计算机工程与科学 学科 工学
关键词 遥感目标 稀疏表示 二进小波变换 SIFT特征 扩展字典
年,卷(期) 2017,(8) 所属期刊栏目 图形与图像
研究方向 页码范围 1508-1512
页数 5页 分类号 TP391.4
字数 3838字 语种 中文
DOI 10.3969/j.issn.1007-130X.2017.08.019
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王威 长沙理工大学计算机与通信工程学院 30 63 4.0 6.0
2 李骥 长沙理工大学计算机与通信工程学院 16 42 3.0 5.0
3 王艳然 长沙理工大学计算机与通信工程学院 2 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (64)
共引文献  (65)
参考文献  (12)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(6)
  • 参考文献(1)
  • 二级参考文献(5)
2005(10)
  • 参考文献(0)
  • 二级参考文献(10)
2006(10)
  • 参考文献(2)
  • 二级参考文献(8)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(8)
  • 参考文献(2)
  • 二级参考文献(6)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(4)
  • 参考文献(2)
  • 二级参考文献(2)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
遥感目标
稀疏表示
二进小波变换
SIFT特征
扩展字典
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导