基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了准确地进行SAR图像目标识别,提出一种基于Randomfaces与稀疏表示的SAR目标识别方法,该方法首先利用Randomfaces进行训练样本的降维处理,然后利用降维后的训练样本构建稀疏线性模型,通过e1范数最优化求解测试样本的稀疏系数解x,最后利用系数的稀疏性分布进行目标的分类识别.基于MSTAR数据进行了仿真验证,实验证明:基于Randomfaces与稀疏表示的SAR目标识别方法,在目标方位角未知的情况下识别率仍可达到98%以上,且Randomfaces的降维方式降低了在特征提取过程中对训练样本的要求.
推荐文章
基于增强字典稀疏表示分类的SAR目标识别方法
合成孔径雷达
目标识别
增强字典
稀疏表示分类
基于稀疏表示的SAR图像目标识别方法
合成孔径雷达(SAR)
目标识别
稀疏表示
?1范数最优化
稀疏表示框架下的SAR目标识别
级联字典
字典构建
并联字典
稀疏表示
SAR目标识别
基于人眼视觉皮层系统的SAR图像目标识别
SAR图像
目标识别
视觉皮层系统
交叉视觉皮质模型
稀疏自动编码器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Randomfaces与稀疏表示的SAR目标识别
来源期刊 火力与指挥控制 学科 工学
关键词 SAR 目标识别 稀疏表示 e1范数最优化
年,卷(期) 2013,(10) 所属期刊栏目 工程实践
研究方向 页码范围 149-153
页数 5页 分类号 TP391|TN951
字数 4833字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 姜晖 10 24 3.0 4.0
2 刘振 5 11 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (9)
共引文献  (55)
参考文献  (12)
节点文献
引证文献  (5)
同被引文献  (16)
二级引证文献  (3)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(4)
  • 参考文献(2)
  • 二级参考文献(2)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(3)
  • 参考文献(3)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
SAR
目标识别
稀疏表示
e1范数最优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
火力与指挥控制
月刊
1002-0640
14-1138/TJ
大16开
山西太原193号信箱
22-134
1976
chi
出版文献量(篇)
9188
总下载数(次)
26
总被引数(次)
34280
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导