基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对高光谱数据维数高、有标签样本少等特点,采用半监督分类利用未标记样本信息提高高光谱图像分类精度.主动学习研究训练样本的选择方法,以少量的标记样本得到尽可能好的泛化能力.本文提出了一种结合主动学习算法的半监督分类算法.该方法使用支持向量机作为基本的学习模型,通过主动学习方法选取训练样本,以伪标记的形式加入到分类器的训练中,结合验证分类器迭代选出置信度较高的伪标记样本,通过差分进化算法交叉变异伪标记样本扩充标记样本群.在两个数据集上进行仿真实验,与传统分类算法相比,所提算法的总体分类精度分别提高了1.97%、0.49%,表明该算法能够有效地提升主动学习样本选择的效率,在有限带标记样本情况下提高了分类器精度.
推荐文章
结合主动学习策略的半监督分类算法
半监督分类
主动学习
投票熵
样本密度
融合主动学习的改进贝叶斯半监督分类算法研究
半监督分类
主动学习策略
概率模型
贝叶斯分类
KL距离
利用特征子空间评价与多分类器融合的高光谱图像分类
高光谱图像
多分类器融合
自适应子空间分解
加权表决
面向高光谱图像分类的半监督丛流形学习
高光谱遥感图像
鉴别特征
丛流形结构
半监督丛流形学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合主动学习的高光谱图像半监督分类
来源期刊 哈尔滨工程大学学报 学科 工学
关键词 高光谱图像 半监督分类 支持向量机 主动学习 差分进化
年,卷(期) 2017,(8) 所属期刊栏目
研究方向 页码范围 1322-1327
页数 6页 分类号 TP75
字数 5186字 语种 中文
DOI 10.11990/jheu.201606046
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王立国 哈尔滨工程大学信息与通信工程学院 116 829 15.0 23.0
2 李阳 哈尔滨工程大学信息与通信工程学院 36 515 9.0 22.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (8)
节点文献
引证文献  (3)
同被引文献  (6)
二级引证文献  (3)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(2)
  • 参考文献(2)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高光谱图像
半监督分类
支持向量机
主动学习
差分进化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
哈尔滨工程大学学报
月刊
1006-7043
23-1390/U
大16开
哈尔滨市南岗区南通大街145号1号楼
14-111
1980
chi
出版文献量(篇)
5623
总下载数(次)
16
总被引数(次)
45433
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导