基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量机(SVM)作为一种有效的机器学习技术可以很好地处理平衡数据集,然而除了对噪声点和野点敏感以外,SVM在非平衡数据分类时会偏向多数类(负类)样本,从而导致少数类(正类)的分类精度变差.为了克服以上问题,提出了一种改进的模糊支持向量机(FSVM)算法.新算法在设计模糊隶属度时,不仅考虑样本到其所在类中心的距离,还考虑了样本的紧密度特征.实验结果表明,相对于标准SVM及已有的FSVM模型,新方法对于非平衡且含有噪声的数据集有更好的分类效果.
推荐文章
基于支持向量机的不平衡数据分类算法的研究
Smote
黎曼几何
核函数
支持向量机
基于混合模糊隶属度的模糊双支持向量机研究
模糊隶属度
支持向量机
双支持向量机
模式分类
非均衡数据的支持向量机新方法
支持向量机
非平衡数据
分类
阈值
不平衡数据知识挖掘:类分布对支持向量机分类的影响
不平衡数据
有偏分类器
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于模糊支持向量机的非平衡数据分类
来源期刊 微型机与应用 学科 工学
关键词 非平衡数据集 模糊支持向量机 模糊隶属度 样本紧密度
年,卷(期) 2017,(16) 所属期刊栏目 人工智能
研究方向 页码范围 56-59
页数 4页 分类号 TP18
字数 4178字 语种 中文
DOI 10.19358/j.issn.1674-7720.2017.16.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 白治江 上海海事大学信息工程学院 16 86 5.0 9.0
2 陈辉辉 上海海事大学信息工程学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (42)
共引文献  (70)
参考文献  (12)
节点文献
引证文献  (3)
同被引文献  (18)
二级引证文献  (0)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(1)
  • 二级参考文献(2)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(7)
  • 参考文献(1)
  • 二级参考文献(6)
2010(7)
  • 参考文献(2)
  • 二级参考文献(5)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(5)
  • 参考文献(4)
  • 二级参考文献(1)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
非平衡数据集
模糊支持向量机
模糊隶属度
样本紧密度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术与网络安全
月刊
2096-5133
10-1543/TP
大16开
北京市海淀区清华东路25号(北京927信箱)
82-417
1982
chi
出版文献量(篇)
10909
总下载数(次)
33
总被引数(次)
35987
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导