基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统钻井动态风险评估严重依赖于专家主观判断、结果大多是定性或半定量,无法满足深井复杂地层钻井安全需求.针对该问题,研究建立了基于PSO优化BP神经网络的钻井动态风险评估方法.通过对录井资料的监测分析,实时判断井下风险发生的类型并定量计算风险发生概率,可以在风险发生的早期给出预警信息,及时指导风险调控措施的开展.海上BD气田的实例分析表明,基于构建的动态风险评估模型得到的风险预测结果与实际风险发生情况相符合,说明建立的模型是合理可行的.该模型对于钻井作业过程中动态风险评估具有一定的参考价值.
推荐文章
基于GPU的PSO-BP神经网络DOA估计
波达方向估计
粒子群优化
神经网络
图形处理单元
统一计算设备架构
基于新型PSO算法优化BP神经网络的软件缺陷预测方法研究
软件缺陷预测
粒子群算法
神经网络
基于BP神经网络的软件项目风险评估研究
软件项目
TEMP模型
风险评估
BP神经网络
基于PSO优化BP神经网络的逆运动学求解研究
BP神经网络
PSO算法
逆运动学求解
机器人
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PSO优化BP神经网络的钻井动态风险评估方法
来源期刊 中国安全生产科学技术 学科 工学
关键词 PSO粒子群算法 BP神经网络 钻井动态风险评估 风险预警
年,卷(期) 2017,(8) 所属期刊栏目 学术论著
研究方向 页码范围 5-11
页数 7页 分类号 TE21
字数 5422字 语种 中文
DOI 10.11731/j.issn.1673-193x.2017.08.001
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (655)
参考文献  (10)
节点文献
引证文献  (8)
同被引文献  (59)
二级引证文献  (4)
1964(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(5)
  • 参考文献(2)
  • 二级参考文献(3)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(5)
  • 参考文献(1)
  • 二级参考文献(4)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(7)
  • 引证文献(5)
  • 二级引证文献(2)
2020(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
PSO粒子群算法
BP神经网络
钻井动态风险评估
风险预警
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国安全生产科学技术
月刊
1673-193X
11-5335/TB
大16开
北京朝阳区惠新西街17号
82-379
1981
chi
出版文献量(篇)
6865
总下载数(次)
16
总被引数(次)
53643
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导