针对传统BP算法在车牌字符识别速度较慢和识别准确率较低的问题,提出一种改进的BP网络车牌字符识别方法.通过对BP算法的输入特征数优化,在不降低识别精度的情况下精简了输入层节点数,提升了识别速度.改进后的BP算法采用全参数自动调整,引入自适应学习率、动量因子、坡度因子,增加了BP算法的识别精度;同时通过更好的利用车牌字符特征和BP网络特征,降低了算法结构的复杂性,增强了算法的鲁棒性.实验结果表明,该算法在实际采集的自建整副车牌数据集上的识别率上比传统BP神经网络车牌识别算法提高近6.5%;在识别速度上提高近1.3 s.