作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
对于网络运行过程中产生的海量日志信息,传统故障诊断方法很难进行实时而全面的日志分析.针对该问题,提出一种基于卷积神经网络(Convolutional Neural Network,CNN)的网络故障诊断模型,利用Skip-gram模型进行词向量训练,并将词向量作为卷积神经网络输入,最终通过Softmax回归进行分类.实验结果表明,该模型可以有效处理网络故障诊断任务,且优于传统机器学习方法,对于网络运行日志的故障诊断准确率可达73.2%以上.
推荐文章
概率神经网络故障诊断的粗糙集优化方法
粗糙集
模糊C均值聚类
概率神经网络
故障诊断
基于模糊神经网络的复杂网络故障诊断设计
复杂网络
隶属度
模糊神经网络
故障诊断
基于改进深度卷积神经网络的轴承故障诊断
风电机组
轴承
故障诊断
深度卷积神经网络
基于卷积神经网络的滚动轴承故障诊断方法
深度学习
卷积神经网络
特征自动提取
轴承故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的网络故障诊断模型
来源期刊 软件导刊 学科 工学
关键词 日志信息 故障诊断 卷积神经网络 词向量
年,卷(期) 2017,(12) 所属期刊栏目 软件理论与方法
研究方向 页码范围 40-43
页数 4页 分类号 TP301
字数 4061字 语种 中文
DOI 10.11907/rjdk.172278
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李酉戌 上海理工大学光电信息与计算机工程学院 1 5 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (2)
共引文献  (4)
参考文献  (4)
节点文献
引证文献  (5)
同被引文献  (33)
二级引证文献  (1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(3)
  • 引证文献(2)
  • 二级引证文献(1)
研究主题发展历程
节点文献
日志信息
故障诊断
卷积神经网络
词向量
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件导刊
月刊
1672-7800
42-1671/TP
16开
湖北省武汉市
38-431
2002
chi
出版文献量(篇)
9809
总下载数(次)
57
总被引数(次)
30383
论文1v1指导